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Abstract—Forward secrecy guarantees that eavesdroppers sim-
ply cannot reveal secret data of past communications. While
many TLS servers have deployed the ephemeral Diffie-Hellman
(DHE) key exchange to support forward secrecy, most sites use
weak DH parameters resulting in a false sense of security. In
our study, we surveyed a total of 473,802 TLS servers and
found that 82.9% of the DHE-enabled servers were using weak
DH parameters. Furthermore, given current parameter and
algorithm choices, we show that the traditional performance
argument against forward secrecy is no longer true. We compared
the server throughput of various TLS setups, and measured
real-world client-side latencies using an ad network. Our results
indicate that forward secrecy is no harder, and can even be faster
using elliptic curve cryptography (ECC), than no forward secrecy.
We suggest that sites should migrate to ECC-based forward
secrecy for both security and performance reasons.
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I. INTRODUCTION

The Transport Layer Security (TLS) protocol is designed to
provide privacy and data integrity between two communicating
parties. TLS is increasingly used on the Internet to protect
users’ emails, credit card transactions and other personal data.
We briefly describe how TLS protects data from eavesdroppers
as follows. When a client connects to a TLS server, the client
generates a random nonce (the pre-master secret), encrypts it
with the server’s public key, and sends it to the server. The
pre-master secret is used by both parties to derive a shared
session key for bulk encryption. Since the pre-master secret
is encrypted with the server’s public key, only the holder of
the server’s private key should be able to decrypt encrypted
messages. However, the security of the server’s private key
is not always as robust as one may wish. An attacker could
possibly steal private keys from server administrators via
social engineering, recover expired private keys from discarded
storage devices (that might be less protected), or perform
cryptanalysis with future super computers. In fact, the Heart-
bleed OpenSSL bug [1] makes a point that private keys can be
silently stolen from servers. Hence, an eavesdropper capturing
encrypted traffic today might be able to decrypt the traffic in
the future. A leaked document [2] even suggests that some
governments have surveillance programs to capture backbone
communications. If a government stores all of the captured
traffic and later requests the server’s private key, then past
encrypted communications may be decrypted.

In response, some sites like Google have deployed forward
secrecy to protect the privacy of past encrypted communi-
cations [3], using TLS’s ephemeral Diffie-Hellman (DHE)
or ephemeral Elliptic Curve Diffie-Hellman (ECDHE) key
exchange methods. With these methods, the server’s long-
term secret key is used to sign a short-lived (ephemeral)
Diffie-Hellman key exchange message. The resulting Diffie-
Hellman secret is used as the session’s pre-master secret.
Once the pre-master secret is discarded after the session,
the session key cannot be reconstructed even if the server’s
private key is given. Unfortunately, we discovered in our study
that 82.9% of web sites who support DHE are using DH
parameters weaker than their signature key strengths, resulting
in a weakened pre-master secret. This suggests an industry-
wide misunderstanding of how DHE should be deployed.

Our results. In this study, we performed a survey of TLS for-
ward secrecy deployment across the top one million websites.
We then evaluate the performance costs of forward secrecy
on servers and real-world clients. Some of our results are as
follows:

We successfully scanned 473,802 websites that use TLS.
Over 74% of those sites supported at least one of the two
ephemeral key exchange methods (DHE or ECDHE). Unfor-
tunately, we discovered that 82.9% of the servers supporting
DHE used Diffie-Hellman parameters that are weaker than
their RSA signature strengths. The resulting sessions are
therefore more vulnerable to a brute-force cryptanalysis attack
than if the RSA key exchange (with no forward secrecy) was
used.

We evaluated the throughput of TLS servers and find that
ECC-based forward secrecy is not much slower, and can even
be faster, than RSA-based setups with no forward secrecy.
The reason is that with the RSA key exchange, the server must
perform an expensive RSA decryption on every key exchange.
With the ECDHE key exchange, the server can RSA-sign its
ECDH parameters once and re-use that signature across several
connections. The server-side online cryptographic operation is
then just one elliptic curve multiplication which can be faster
than a single RSA decryption (of equivalent key strength).
Consequently, the traditional performance argument against
forward-secrecy is simply no longer valid given the current
parameter and algorithm choices. Our results suggest that
websites should move to using ECDHE and reap the security



and performance benefits.
Lastly, we measured TLS client latencies on thousands of

real-world clients using ad networks. We identified a one-
time performance issue that occurs when a client first sees an
ECDSA signature. Encouragingly, our TLS latency measure-
ments indicate that ECC-based forward secrecy performs no
worse than plain RSA-based setups on the real-world clients.

Organization. The rest of this paper is organized as follows.
Section II provides background and related work. Section III
presents a survey of TLS servers, which reveals that most DHE
servers use insufficient key strengths. Section IV evaluates the
server and client performance of common TLS cipher suites
that support forward secrecy. Section V discusses the best
practices for deploying forward secrecy. Section VI concludes.

II. BACKGROUND

In this section, we give a brief introduction to the TLS
protocol and forward secrecy. We then survey related work.

A. SSL/TLS

Transport Layer Security (TLS) [4], the successor of Secure
Sockets Layer (SSL) [5], is an encryption protocol designed to
prevent network adversaries from eavesdropping or tampering
sensitive data, while enabling clients and servers to reliably
identify each other. TLS allows application-specific protocols
such as HTTP to be encapsulated and securely transmitted
over the underlying transport protocols such as TCP, and is
increasingly used by web applications, especially by webmail
and online banking websites.

The TLS protocol is designed to support an extensible set
of cipher suites, where each cipher suite defines a combination
of authentication, key exchange, bulk encryption, and message
authentication code (MAC) algorithms to be used.

• Authentication algorithms allow communicating parties to
verify the identities of each other, e.g., RSA and DSA.

• Key exchange schemes allow peers to securely agree upon
on a session key used for bulk encryption, e.g., RSA and
Diffie-Hellman.

• Bulk encryption ciphers are used to encrypt the applica-
tion data, e.g., AES and RC4.

• Message authentication algorithms are used to generate
message digests, e.g., SHA-1.

Recent versions of TLS now support elliptic curve cryptogra-
phy (ECC) [6], including ECDSA authentication and Elliptic
Curve Diffie-Hellman key exchange.

When initializing a TLS connection, the client negotiates
the cipher suite and parameters with the server over a TLS
handshake. Figure 1 depicts a standard TLS handshake using
the basic RSA key exchange with no client certificates. Ini-
tially, the client sends a ClientHello message to the server to
provide a list of supported cipher suites (in preference order)
and a client random nonce. In response, the server sends a
ServerHello message that specifies the chosen cipher suite
and a server random nonce. Note that the server determines the
cipher suite and may ultimately override the client’s preference

Client Server

ClientHello −−−−−−→
ServerHello

Certificate
ServerKeyExchange (optional)

←−−−−−− ServerHelloDone
ClientKeyExchange
ChangeCipherSpec
Finished −−−−−−→

ChangeCipherSpec
←−−−−−− Finished

Fig. 1: A TLS handshake with no client authentication. The
optional ServerKeyExchange message is sent when using
the Diffie-Hellman key exchange.

order. The server also sends its public key certificate over the
Certificate message to the client. Since the message may be
manipulated by a network attacker, the client is responsible
of checking whether the server’s certificate is valid (e.g.,
issued by a trusted certificate authority, matches the server’s
hostname, not expired nor revoked, etc.). If the certificate is
accepted, the client generates a pre-master secret, encrypts
this pre-master secret using the server’s public key, and sends
the encrypted secret to the server over a ClientKeyExchange
message. At this point, both the client and server can compute
a common master secret (used to derive the session key) from
the pre-master secret and the random nonces. Lastly, both
the server and the client send ChangeCipherSpec messages,
indicating that subsequent messages will be encrypted using
the negotiated cipher suite and session key, starting with an
encrypted Finished message.

B. Forward secrecy

Forward secrecy, also known as perfect forward secrecy
(PFS), is an important security property which guarantees that
derived session keys cannot be revealed, even if the long-
term private key is compromised in the future. Especially in
the situation where Internet surveillance is a concern, forward
secrecy lets enterprises argue that eavesdroppers simply cannot
reveal secret data of past communications. However, in TLS,
forward secrecy is not necessarily guaranteed. In particular,
the RSA key exchange is only secure as long as the server
can protect its private key. If the server’s private key is ever
revealed, an attacker can decrypt all recorded sessions by
deriving the pre-master secret using the server’s private key,
and basically recover all past session keys.

There are currently two key exchange methods in TLS
that support forward secrecy, including ephemeral Diffie-
Hellman (DHE) and ephemeral Elliptic Curve Diffie-Hellman
(ECDHE). When using DHE or ECDHE, the server’s long-
term secret key is used to sign a short-lived Diffie-Hellman
key exchange message as the pre-master secret (that is dis-
carded after the session). For example, when using DHE key
exchange with RSA signatures, the server sends an additional
ServerKeyExchange message which contains an ephemeral
Diffie-Hellman public key that is signed with server’s RSA



private key. Similarly, when using ECDHE with RSA signa-
tures, an extra ServerKeyExchange message contains the
ephemeral elliptic curve Diffie-Hellman public key and its
elliptic curve domain parameters, which are signed with the
server’s RSA private key. The server may also replace RSA
signatures entirely with elliptic curve cryptography, by signing
the ECDHE public key with its ECDSA private key.

C. Related work

Several past studies [7], [8], [9], [10] have crawled public
websites to measure the prevalence of specific server vulnera-
bilities in the wild. For instance, Lee et al. [9] scanned 19,429
TLS servers checking support for weak export ciphers and
insecure protocol versions. The SSL Pulse project [11] peri-
odically scans the top TLS servers for known vulnerabilities
such as insecure renegotiation, BEAST and CRIME. Another
category of TLS surveys [12], [13], [14], [15] analyzed TLS
certificates of public websites to measure common server mis-
configurations. For instance, Holz et al. [13] scanned the Alexa
top one million sites and monitored TLS traffic of a research
network over a 1.5 year period, reporting that roughly 40% of
the observed certificates failed to validate. In comparison, our
TLS survey focuses on studying forward security deployments
and identifying insecure DHE or ECDHE configurations.

A number of TLS performance evaluations [16], [17],
[18], [19], [20] have been conducted in the past. Coarfa et
al. [17] profiled TLS web servers with trace-driven workloads
in 2002, showing that the largest performance cost on the
TLS web server is from the RSA operations, and suggested
that TLS overhead will diminish as CPUs become faster.
Gupta et al. [18] showed that TLS server throughput can
increase by 11% to 31% when using ECDSA signatures
over RSA signatures. Bernat [19] evaluated RSA, DHE and
ECDHE key exchanges over 1,000 handshakes and reported a
15% server overhead for using ECDHE-256 over RSA-2048
key exchange. Subsequently, Mavrogiannopoulos [20] reported
that at equivalent security levels, ECDHE-192 outperforms
RSA-1776 key exchange. In our work, we are first to conduct
an ad experiment to measure client perceived TLS latencies
in real-world.

III. SURVEY OF TLS SERVERS

We conducted our survey to find out how many servers cur-
rently support forward secrecy, and whether servers use secure
Diffie-Hellman parameters. We describe our methodology for
scanning websites first and then present our results.

A. Methodology

We surveyed the top 1,000,000 global sites (retrieved from
Alexa [21] on September 9, 2013) during September 13, 2013
to September 27, 2013. The Alexa dataset is a ranked list of the
most popular sites on the Internet, and has been widely used
by several TLS server surveys [9], [13], [15]. Since Alexa’s
rankings are not based on TLS traffic, many of the listed sites
do not actually support TLS, thus we used a simple heuristic
to discover TLS-enabled servers. For each site in the Alexa

Error Hosts

Connection refused error 163,948
SSL errors 187,532
Timeout 120,068
Invalid hostname error 41,209
Connection reset error 11,915
IP unreachable 1,325
DoS-blocked 192
Other errors 9

TABLE I: Connection errors during
TLS survey

list, we tried connecting to port 443 of the naked domain, and
then the www subdomain (if the former failed).

We implemented our scanner based on SSLScan 1.8.2 [22].
By making multiple TLS connections to the host, SSLScan de-
termines the supported SSL/TLS protocol versions, supported
cipher suites, and cipher suite preference of a TLS server.
We updated the code to test all of the current TLS cipher
suites available in OpenSSL 1.0.1e [23], and modified our
OpenSSL to expose TLS key exchange details, including the
actual DH parameters and ECDH parameters from the servers.
Since the scanning process is I/O bound due to network
latencies, we implemented a Python script that spawns a pool
of 300 concurrent scanner processes, such that multiple sites
are scanned in parallel (rather than in serial). In addition, we
set a socket connection timeout of 30 seconds.

In our study, we made no attempt to validate the TLS
certificates, thus our dataset may include reused certificates on
shared hosts, and possibly some configurations of servers not
actually in use. This particular subject has been investigated
by several existing studies [13], [14], [15], [12].

B. Results

We successfully performed our TLS scan on 473,802 unique
hosts out of the top one million sites. Note that distinct
hostnames may share the same IP or physical machine. Table I
summarizes the connection errors of the 526,198 Alexa entries
where both the naked domain and the www subdomain failed.
Most of connection failures (e.g. timeout, connection refused,
connection reset) were simply because websites did not run
a TLS server on port 443. The SSL errors were possibly
caused by server misconfigurations, which triggered TLS alert
messages before the TLS handshake has completed. Most of
the invalid hostname errors were caused by hostname strings
in the Alexa dataset that incorrectly contained a URL path
component (which otherwise overlaps with valid hostnames
in the dataset).

There were 192 errors that we labeled as “DoS-blocked”,
which means the site actually accepted our initial TLS con-
nection, but stopped responding to our machine before we
were able to test all of the available cipher suites. We reason
that these websites deployed defenses against denial-of-service
(DoS) attacks, which blocked our IP address after making



Method Hosts IMC’07[9]

RSA 473,688 (99.9%) 99.86%
DHE 283,647 (59.8%) 57.57%
ECDHE 85,070 (17.9%)
Fixed ECDH 1 (0.0%)

TABLE II: Key exchange method support on TLS servers

Size (bits) Hosts

256 2 (0.0%)
512 96,559 (34.0%)
768 933 (0.3%)

1024 281714 (99.3%)
1544 1 (0.0%)
2048 859 (0.3%)
3248 2 (0.0%)
4096 14 (0.0%)

TABLE III: Diffie-Hellman parameter size support for DHE
key exchange

consecutive connections in a short period of time. While there
may be workarounds to this (e.g., acquiring more IP addresses
to open connections from, or lowering our connection rate),
the number of sites affected was not significant. We present
the main results of the successful TLS scans below.1

1) Key exchange methods: First of all, we show in Table II
the key exchange methods supported by websites, comparing
to Lee et al.’s study in 2006 [9]. Since each unique host may
use multiple SSL/TLS protocol versions, we consider that a
particular key exchange method is supported by a host if it
worked in at least one of the SSL/TLS protocol versions in use.
In our results, RSA is clearly the most widely supported key
exchange method, accepted by over 99.9% TLS sites. There
were 59.8% TLS sites that supported DHE (which barely
increased from 57.5% since 2006). However, only 17.9%
of the TLS sites actually supported ECDHE. One possible
reason for the low ECDHE adoption rate is that elliptic curve
cryptography has been intentionally disabled in popular Linux
distributions (Red Hat / Fedora) due to patent concerns until
2013 [24].

As mentioned in Section II-B, both the DHE and ECDHE
key exchanges support forward secrecy while the RSA key
exchange does not. In all, there were a total of 353,209
(74.5%) unique hosts that enabled either DHE or ECDHE, thus
supported forward secrecy. Out of the servers that supported
forward secrecy, we noticed that 287,301 (81%) of these
servers preferred to use either DHE or ECDHE over RSA.

Weak ephemeral DH parameters. In Table III, we show
the actual Diffie-Hellman parameter sizes supported by TLS
servers that enabled the DHE key exchange. We note that a sin-

1Additional data (SSL/TLS versions, encryption methods, and MAC meth-
ods) from our TLS scan are provided in Appendix A.

Curve Hosts

secp256r1 81,789 (96.1%)
sect233r1 3,123 (3.6%)
sect571r1 316 (0.3%)
secp384r1 86 (0.1%)
secp521r1 73 (0.0%)
sect163r2 26 (0.0%)
secp224r1 3 (0.0%)
secp192r1 1 (0.0%)

TABLE IV: Elliptic curves used for ECDHE key exchange

gle host may support multiple DH parameter sizes, thus adding
up the percentages of supporting hosts across different DH
parameter sizes may exceed 100%. To our surprise, only 0.3%
of the DHE-enabled servers have actually deployed 2048-bit
DH parameters! Our results show that as much as 99.3% of the
DHE-enabled servers supported 1024-bit DH parameters. This
is concerning since CAs and browsers are moving to 2048-
bit (or stronger) RSA authentication by 2014 [25], and 1024-
bit Diffie-Hellman may soon be considered insufficient. Even
worse, there were 34% DHE-enabled servers that deployed
insecure 512-bit DH parameters, mostly due to supporting
export cipher suites.

We further examine how many TLS servers are using DHE
with an ephemeral DH parameter size smaller (weaker) than
its RSA/DSA key size. Unfortunately, the majority (82.9%) of
the DHE-enabled servers supplied smaller DH parameters. On
61.9% of the DHE-enabled servers, the server used smaller DH
parameters and used DHE as server’s preferred key exchange.
In other words, if the browser supports both RSA and DHE,
the server would use the weakened DHE by default.

To explain the widespread usage of weak DH parameters,
we cite the fact that popular web servers simply did not
support 2048-bit DHE out of the box (until recently) [26],
[27]. For example, Apache (prior version 2.4.7) only supported
up to 1024-bit DH parameters [28], and IIS uses 768-bit DH
parameters [29]. Interestingly, Graham [30] pointed out that
Tor (prior version 2.4) uses 1024-bit DHE as well. Another
possible pushback against increasing DHE strength on servers
is that Java clients only support up to 1024-bit DH parameters.
Fortunately, a recent patch has lifted this limitation [31].

Consistent ephemeral ECDH parameters Encouragingly,
out of all the successful ECDHE connections, none of the
ephemeral ECDHE keys were weaker than the RSA signatures
in use. This may be explained by the fact that the key strength
of the most commonly used 256-bit ECDHE is stronger than
the currently recommended 2048-bit RSA signature.

Table IV lists the elliptic curves observed over the ECDHE
key exchange during our TLS survey when connecting with an
OpenSSL client. Most of the ECDHE-enabled sites used the
curve named secp256r1, also known as NIST P-256 [32].
One should expect similar results using browsers, since Fire-
fox and Google Chrome only support three NIST curves



Method Hosts IMC’07[9]

RSA 473,780 (99.9%) ≥ 99.86%
Anonymous 7,750 (1.6%)
DSA 22 (0.0%) 0.02%
ECDSA 2 (0.0%)
ECDH 1 (0.0%)

TABLE V: Authentication method support on TLS servers

Size (bits) Hosts IMC’13[15] IMC’07[9]

≤ 512 350 (0.0%) 0.1% 3.94%
513 - 1023 20 (0.0%) 0.0% 1.42%

1024 87,760 (18.5%) 10.5% 88.35%
1025 - 2047 20 (0.0%) 0.7% 0.01%

2048 374,294 (79.0%) 86.4% 6.14%
2049 - 4095 251 (0.0%) 0.0% 0.00%

4096 11,093 (2.3%) 2.3% 0.19%
≥ 4097 22 (0.0%) 0.0% 0.00%

TABLE VI: RSA key sizes of TLS server certificates

(secp256r1, secp384r1 and secp521r1), and Internet Ex-
plorer only supports two curves (secp256r1 and secp384r1).

During our scan, we noticed that 34,145 hosts (40.1% of the
ECDHE-enabled servers) reused their ECDHE public keys for
multiple connections, which means that these servers did not
re-sign new ECDH parameters for every connection. This may
be a deliberate performance optimization, as long as the server
re-generates new parameters periodically.

2) Authentication methods: Table V lists the authentication
methods that were supported by websites. As shown, RSA is
by far the most commonly deployed authentication method.
This result has not changed much since 2006 [9]. We only
observed two hosts that supported ECDSA authentication. By
manual inspection, we observed that one host used a self-
signed ECC certificate, while the other host used a valid ECC
certificate signed by Symantec. There was one odd host that
used ECDH authentication with a self-signed certificate for the
fixed ECDH key exchange. Unfortunately, we noticed there are
1.6% hosts that still support anonymous cipher suites, which
offers no authentication at all and are trivially vulnerable to
TLS man-in-the-middle attacks.

Next, we present the distribution of RSA public key sizes
of TLS sites that use RSA signatures in Table VI. Each unique
host may possibly support multiple public key sizes. Note
that the percentages published by Durumeric et al. [15] are
calculated differently; they represent the distribution of each
public key size by counting unique trusted certificates, rather
than unique hosts; furthermore, they excluded certificates that
are not trusted by browsers, thus differences from our results
can be expected. Nevertheless, we find our results roughly in
line with their study. Usage of 1024-bit RSA public keys have
significantly dropped since 2006 [9], while 2048-bit keys have
increased to 79% of the measured TLS servers.

Cipher suitea Key exchange Authentication PFS

RSA-RSA RSA-2048 RSA-2048 No
DHE-RSA DHE-2048 RSA-2048 Yes
ECDHE-RSA ECDHE-256 RSA-2048 Yes
ECDHE-ECDSA ECDHE-256 ECDSA-256 Yes
DHE-DSA DHE-2048 DSA-2048 Yes
a For brevity, we abbreviated the actual TLS cipher suite names, e.g.,

TLS DHE RSA WITH AES 128 CBC SHA as DHE-RSA.

TABLE VII: TLS cipher suites for evaluation

IV. TLS PERFORMANCE EVALUATION

In this section, we analyze the performance of various TLS
cipher suites that support forward secrecy, on the server side
and the client side. We conducted two separate experiments
to evaluate the performance of various TLS cipher suites.
First, we conducted a controlled experiment where we load
tested our TLS servers over a high-speed internal network.
Second, we ran an Ad experiment to measure the client-side
TLS latencies on real-world clients.

A. TLS server setup

In our experiments, we used Apache 2.4.4 compiled with
OpenSSL 1.0.1e (with 64-bit elliptic curve optimizations [33])
to run our TLS servers. Abalea’s mod ssl patch [28] was
applied to support 2048-bit Diffie-Hellman parameters. 2 We
used Rackspace virtual private servers (a generic low-end setup
for running modern web servers) equipped with AMD Opteron
4170 HE 2.1 GHz CPU, 512 MB RAM and 40 Mbps network
bandwidth, installed with Debian Linux 2.6.32-5. We setup
multiple TLS virtual hosts on distinct ports, in which each
TLS virtual host enabled only a single cipher suite.

We selected five representative TLS cipher suites for eval-
uation as summarized in Table VII. All of the cipher suites
in our experiments were uniformly configured to use 128-
bit AES-CBC encryption with SHA-1 HMAC. However, the
security strengths of these cipher suites were not necessarily
equivalent (e.g., ECDSA-256 is stronger than RSA-2048 and
DSA-2048). This is mainly because our server certificates were
issued by a commercial CA, which does not allow configuring
arbitrary certificate strengths. Note that we could not simply
use self-signed certificates, since they trigger SSL certificate
warnings on real-world clients in our ad experiment. Table VIII
compares the 3 production TLS certificate chains used in our
evaluation, listing the signature algorithms, signature hash al-
gorithms and chain sizes. Different signature algorithms (RSA,
DSA and ECDSA) were not mix-and-matched within the same
chain. We point out that there is roughly an one kilobyte size
difference between the RSA and ECDSA certificate chains.
This is because the a ECDSA-256 public key plus signature
is smaller than a RSA-2048 public key plus signature, and
there are two certificates (leaf and intermediate) transmitted
per chain. Lastly, since none of the major browsers currently

2Abalea’s patch is obsolete as of Apache 2.4.7 [34].



Leaf certificate Intermediate certificate Root certificate (not transmitted) Chain size (bytes)

1. RSA-2048, SHA-256 RSA-2048, SHA-1 RSA-2048, SHA-1 3,119
2. DSA-2048, SHA-256 DSA-2048, SHA-256 DSA-2048, SHA-256 3,343
3. ECDSA-256, SHA-256 ECDSA-256, SHA-384 ECDSA-384, SHA-384 2,104

TABLE VIII: TLS certificate chains issued by Symantec CA for evaluation

support DSA-2048 signatures (despite that some support DSA-
1024), DHE-DSA was not measured in the ad experiment.

B. Controlled experiment

1) Methodology: In the controlled experiment, we mea-
sured the average server throughput of each TLS server setup
by generating large amounts of synthetic TLS traffic towards
the server, from two client machines over a 40 Mbps private
network. We used the ApacheBench tool [35] to send HTTPS
requests continuously, and concurrently (1,000 requests at the
same time), from each client machine. We disabled TLS ses-
sion resumption and HTTP connection re-use. We monitored
the server throughput (number of requests per second) and
took the average value over 5 minutes. For sanity check, we
tested each TLS server configuration using GET requests and
HEAD requests, separately.

Since the performance of TLS servers may possibly vary by
the complexity of web pages, we setup three different types of
web pages for our experiments, all mirrored from real websites
on the Internet:papp

• Simple page - a copy of one of our author’s home page.
The page was static and hosted on a single domain.

• Complex page - a copy of Amazon.com’s landing page.
We downloaded the page along with its sub-resources
(e.g. images, stylesheets and scripts), and hosted the page
and all sub-resources on a single domain.

• Multi-domain page - a copy of Salon.com’s landing page.
After downloading the page, we manually categorized its
sub-resources according to their originating domains. We
then setup 10 sub-domains on our site (corresponding to
the originating domains) to serve the sub-resources, and
modified the landing page to request its sub-resources
from those sub-domains.

2) Results: In Figure 2, we show the average number of
requests per second that the web server can serve when fully
loaded under each server configuration. First, we observe the
impact of key exchange schemes on server throughput by
comparing the three cipher suites (RSA-RSA, DHE-RSA and
ECDHE-RSA) that use the same signature algorithm (RSA-
2048) but different key exchange schemes (RSA, DHE and
ECDHE). Our results show that RSA-RSA was clearly the
fastest of the three regardless of the type of web page,
peaking at 265.4 GET requests per second (when serving
simple pages). Notably, DHE-RSA performed significantly
slower than RSA-RSA and ECDHE-RSA, averaging 45.7
requests per second in the best case. This should be due to
the extra computation required for generating the ephemeral

DH key (and RSA-signing it) for each ServerKeyExchange
message. Interestingly, ECDHE-RSA averaged 237 requests
per second (when serving simple pages), suggesting that the
server performance cost of forward secrecy using ECDHE is
not only dramatically cheaper than DHE, but also almost free
compared to plain RSA.

Next, we look at how different signature algorithms impact
server throughput. By comparing DHE-RSA and DHE-DSA,
we check whether RSA and DSA signature algorithms perform
differently (using the same DHE key exchange). DHE-RSA
averaged as low as 44.9 requests per second (when serving
multi-domain pages). Similarly, DHE-DSA averaged as low
as 44.8 requests per second (when serving simple pages).
Evidently, the performance of DHE key exchange was con-
sistently the worst regardless of using either RSA or DSA
signatures. When using ECDSA signatures (matched with the
ECDHE key exchange), we can see that the performance
of ECDHE-ECDSA is the fastest (peaking at 405 requests
per second when serving simple pages). ECDHE-ECDSA
is not only faster than ECDHE-RSA (also using ECDHE
key exchange), but even faster than RSA-RSA, which does
not provide forward secrecy. Moreover, ECDSA-256 has a
higher security strength than RSA-2048, thus one could expect
a larger difference if comparing equivalent strengths. Most
interestingly, this suggests that enabling forward secrecy may
even improve server performance.

In order to reaffirm the observations above (for GET re-
quests), we compare the corresponding measurements using
HEAD requests, which skips transmitting the entire page body
after the TLS handshake. We find that both results were
consistent. We draw the following three main observations
from our controlled experiment:

• DHE-RSA and DHE-DSA performed the slowest. Using
DHE, forward secrecy is very slow.

• ECDHE-RSA is not far worse than RSA-RSA. Using
ECDHE, forward secrecy is basically free.

• ECDHE-ECDSA performed faster than RSA-RSA. Using
elliptic curve cryptography, enabling forward secrecy
actually improves performance.

C. Ad experiment

1) Methodology: To compare the client-side performance
of different TLS cipher suites, we conducted an ad experiment
to measure TLS latencies on real-world clients. Ad networks
have been used by researchers as a platform for measuring
browser and network characteristics, such as finding security
vulnerabilities [36], [37]. In this study, we served our perfor-
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Fig. 2: Server throughput of different configurations under synthetic traffic

mance measurement code to thousands of browsers across the
world over an ad network.

Our experiment setup consisted of two machines (with
separate IP addresses and domain names), one which runs the
TLS servers to be tested (as described in Section IV-A), and
the other which hosts our advertisement banner page (mainly
a blank image and JavaScript code). When our ad banner is
rendered, our code will open TLS connections from the client
to our TLS server by loading each HTTPS test link in an
IFRAME. For each HTTPS test, our script measures the client-
side latencies using the HTML5 Navigation Timing API [38]
(on supporting browsers). We collected the following client-
side latency measurements:

• TLS setup time: The amount of time used to establish
a SSL/TLS connection, including the TLS handshake
time and the certificate validation time on the client.
Unfortunately, this measurement is only available in
Chrome browsers (using Navigation Timing’s optional
secureConnectionStart attribute).

• TCP + TLS setup time: The amount of time used to es-
tablish the transport connection, which includes the TCP
handshake and TLS handshake (and optionally SOCKS
authentication). The required APIs (connectEnd and
connectStart) are currently supported in three major
browsers (including Chrome 6+, Firefox 7+ and IE 9+).

Upon completion, the timing measurements are sent back via
a GET request to our log server. When receiving network
requests, our log server immediately discards the client’s IP
address (to avoid storing information that might individually
identify the viewer of our advertisement). The experiment did
not require any user involvement. If the user navigated away
(e.g. closed the tab) during the experiment, or if the TLS
connection failed, our servers still received partial results.

As mentioned in Section IV-A, all HTTPS tests used sep-
arate server ports with TLS session resumption disabled. The
test pages were loaded in serial on the client to reduce the

interference in between each test. Since modern web clients
are known to cache OCSP responses and we have three
server setups that share the same RSA certificate chain, it
is possible that whichever RSA-certificate setup tested first
may load slower due to performing a fresh OCSP lookup,
while subsequent tests may load faster due to enjoying a
warmed OCSP cache. However, we cannot remotely flush the
client’s OCSP cache before each test, nor do we have the
option of switching different intermediate certificates for our
production certificates. As a workaround, we added “cold”
TLS connections in front of our tests to warm the client’s
OCSP cache, such that all of the subsequent tests would be
equally evaluated under a warmed OCSP cache.

2) Results: We purchased 273,533 advertisement impres-
sions from 23 January 2014 to 29 January 2014. We spent
$167.75 in total, including $122.23 on a run-of-network cam-
paign (195,214 impressions), and $45.52 targeted on mobile
devices (78,319 impressions). We note that not all ad im-
pressions can convert to valid measurements. We discarded
impressions with clients that do not support HTML5 Navi-
gation Timing, and clients that are not viewing our ad for
the first time. Also, users may leave the web page before
completion of tests. We indicate the number of unique clients
that successfully performed each test in Figures 3a-c and 4a-c.
Since the measured client-side latencies may contain outliers,
we visualize our results with a box plot showing the 10th,
25th, 50th (median), 75th and 90th percentiles for each setup.

TLS setup times. Figures 3a-c show the TLS setup times of
different cipher suites in Chrome browsers on Windows, OS
X and Android (note that other browsers do not support this
measurement). When comparing client-side latencies, smaller
values mean better performance (less waiting). As mentioned
in Section IV-A, DHE-DSA was not measured since no major
browser supported DSA-2048. Out of the four different cipher
suites tested, two cipher suites were tested an additional time
for the purpose of warming the OCSP cache, labeled as RSA-
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Fig. 3: Comparison of TLS setup times in Chrome browsers on Windows, OS X and Android. The box plots show the 10th,
25th, 50th, 75th and 90th percentiles of measured TLS setup times for each cipher suite. The corresponding bar charts show
the number of unique clients that successfully completed each test.

RSA COLD and ECDHE-ECDSA COLD. The number of
unique clients for ECDHE-ECDSA COLD appeared to be the
highest because it was always tested first (and many users do
not stay on the page long enough for other tests to complete).

Upon first glance at Figure 3a (Chrome on Windows),
an obvious observation is that the medians of ECDHE-
ECDSA COLD and RSA-RSA COLD are both substantially
slower than the other configurations. Unsurprisingly, the two
“cold” connections may need to perform OCSP lookups,
resulting in longer latencies, while the subsequent tests may
enjoy a warm OCSP cache. We compare DHE-RSA, ECDHE-
RSA, RSA-RSA and ECDHE-ECDSA after warming the
OCSP cache.

While the performances of the 4 different cipher suites (not
labeled “cold”) were not too dissimilar, we noticed that the
ECDHE-ECDSA setup consistently performed the fastest of
all setups, resulting in a median of 366 milliseconds (and
a 90th percentile of 1088 milliseconds). This suggests that
deploying ECC-based forward secrecy actually improves per-
formance on the client over RSA-based setups with no forward
secrecy. Encouragingly, we observe very similar trends on
OS X (in Figure 3b) and Android (in Figure 3c), where
the medians of TLS setup times for ECDHE-ECDSA were
consistently the smallest. In particular, the measurements on
Android provide an interesting data point showing that mobile
devices (typically with less computational power than desktop
clients) might also benefit from ECC-based forward secrecy.
On the other hand, DHE-RSA performed the slowest on
Android mobile with a median of 820 milliseconds (and a
10th percentile of 525 milliseconds). Moreover, DHE-RSA is
not supported in one of the major browsers, Internet Explorer.
Servers that want to support forward secrecy using RSA

certificates should consider choosing ECDHE-RSA over DHE-
RSA for both client compatibility and performance reasons.

TCP + TLS setup times. Since TLS setup time measurements
were only available in Chrome browsers, on other browsers we
fall back on collecting TCP + TLS setup time measurements.
The coarser TCP + TLS setup time includes not only the
TLS handshake but also the TCP handshake, thus may show a
slightly longer delay (and possibly more noise incurred by the
extra round-trips). We compare the TCP + TLS setup times
of different cipher suites in Figures 4a-c for Chrome, Firefox
and Internet Explorer browsers on all platforms. In Figure 4c,
we do not have any results for DHE-RSA since it was not
supported in Internet Explorer.

As a sanity check, the TCP + TLS results for Chrome
in Figure 4a were basically in line with the TLS results
in Figure 3a, where the ECDHE-ECDSA was the fastest of
all cipher suites. For Firefox, we did not observe significant
differences between the client latency medians for each ci-
pher suite in Figure 4b. We did not find any cipher suite
that performed particularly slower. Unlike Chrome (where
ECDHE-ECDSA COLD took roughly 4 seconds longer than
other cipher suites in median), the performance of ECDHE-
ECDSA COLD in Firefox (a median of only 389 millisec-
onds) was not significantly slower than the fastest ECDHE-
ECDSA (a median of only 274 milliseconds). Upon further
investigation, we believe that “cold” connections in Firefox
were often faster than other browsers because Firefox main-
tains its own root CA store (rather than rely on the operating
system’s root CA store). The underlying cause is that not all
legitimate root CA certificates are pre-installed on popular
client systems like Windows. When other browsers (using
the system’s CA root store) encounter an unseen root CA
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Fig. 4: Comparison of TCP + TLS setup times in Chrome, Firefox and Internet Explorer browsers (on all platforms).

certificate, the system automatically attempts to fetch the
root certificate over the Windows Update mechanism [39].
In particular, we confirmed that Symantec’s ECDSA root
certificate was not pre-installed on Windows 8 or Windows
Server 2012. As a result, the ECDHE-ECDSA COLD setup
performs slower in non-Firefox browsers on Windows because
they may need to fetch the ECDSA root certificate on-the-fly
when first seeing the ECDSA certificate.

Nevertheless, fetching a new root certificate is a one-time
cost. As more TLS servers deploy ECDSA certificate chains,
clients will eventually have downloaded the ECDSA root
certificate after visiting any of those sites and will have
payed off this one-time cost. From measurements on real-
world clients, we discovered that without the root CA update,
forward secrecy using ECDHE-ECDSA was not any slower
than that using RSA-RSA.

V. DISCUSSION

Forward secrecy deployment. Our experiments suggest that
the performance-based arguments against deploying forward
secrecy are no longer valid. ECDHE-based key exchange,
which provides forward secrecy, can be faster than basic
RSA-2048 key exchange which does not. The reason for the
performance improvement is the replacement of an expensive
RSA-2048 decryption with faster secp256r1 elliptic curve
operations. As we transition to longer RSA keys, such as RSA-
3072 or RSA-4096, the performance advantage of ECDHE
will become even more pronounced. These results suggest
that sites should migrate to ECDHE (when possible) for both
security and performance reasons.

The elliptic curve monoculture. We were a bit surprised to
find in our study that 96.1% of sites that support ECDHE com-
monly use the NIST curve secp256r1. While we currently
know of no specialized attacks against this curve, it is possible

that a weakness with this specific curve will some day be
discovered. Given the popularity of this curve, this will impact
most sites on the Internet. Although secp256r1 could be a
fine curve to use for the foreseeable future, it is worth pointing
out that we are putting many eggs in that curve’s basket.

RSA vs. ECDSA authentication. Our survey shows that
common practice today when using ECDHE is to use elliptic
curves for key exchange, but use RSA signatures for server-
side authentication. The reason is that sites mainly have
certificates for RSA public keys. From a security standpoint
this is an undesirable setup: a weakness discovered in either
algorithm will defeat the security of TLS at the site. A-
priori, the likelihood of a weakness discovered in one of two
algorithms is far greater than the likelihood of an attack on a
single algorithm. Consequently, due to the desire to move to
ECDHE key exchange, there is a strong argument for sites to
move to certificates for ECDSA public keys.

To understand the risk of using both RSA and ECDHE
(called ECDHE-RSA) compared to only relying on elliptic
curve cryptography (as in ECDHE-ECDSA), consider the
following three possibilities:

1) both RSA and the NIST curve secp256r1 provide
adequate security,

2) curve secp256r1 is secure, but RSA is not,
3) RSA is secure, but curve secp256r1 is not.

Table IX lists the resulting security of ECDHE-RSA and
ECDHE-ECDSA in each of the three cases. The table suggests
that ECDHE-ECDSA incurs less risk than ECDHE-RSA since
there is a scenario where ECDHE-ECDSA is secure, but
ECDHE-RSA is not. The converse cannot happen. Given the
desire to use ECDHE, Table IX is an argument for moving to
elliptic curve public keys for server-side authentication.

To properly move to ECDSA signatures, CAs will need to



ECDHE-RSA ECDHE-ECDSA
RSA and secp256r1 both secure secure secure
secp256r1 secure, RSA insecure insecure secure
RSA secure, secp256r1 insecure insecure insecure

TABLE IX: Comparing ECDHE-RSA and ECDHE-ECDSA

sign those certificates with ECDSA signatures along the entire
certification chain. The security of TLS key exchange will then
only depend on the hardness of a single algebraic problem
instead of two. Only time will tell whether the elliptic curve
discrete logarithm problem (on the NIST curve secp256r1)
is indeed as hard as we currently believe.

Note that moving to ECDSA public keys means that during
the ECDHE key exchange the server will need to generate an
ECDSA signature. The ECDSA signature algorithm requires
strong randomness: bias in the random generator can lead
to exposure of the secret signing key [40]. Therefore, when
moving to ECDSA public keys servers will need to ensure an
adequate source of randomness. An alternative proposal, which
is not frequently used, is to derive the ECDSA randomness by
applying a PRF such as HMAC to the message to be signed,
where the PRF secret key is stored along with the signing key.

DHE misconfiguration. Finally, our survey shows that there is
an industry-wide configuration problem with the deployment
of DHE key exchange. While 79% of web sites moved to
RSA-2048 (compared to 6.14% in 2007), the vast majority of
sites who use DHE set their Diffie-Hellman prime to 1024 bits.
As a result, recovering one computed session key by a brute-
force cryptanalytic attack requires breaking a 1024-bit Diffie-
Hellman problem, not 2048-bit RSA. By 2014 the CA/Browser
Forum will regard 1024-bit security as inadequate. We rec-
ommend that whenever possible, sites abandon DHE in favor
of ECDHE using an elliptic curve with (presumed) security
comparable to RSA-2048.

One could argue that 1024-bit Diffie-Hellman parameters
are justified in this context because the Diffie-Hellman values
are ephemeral and only used for a small number of sessions.
Therefore, attacking a specific 1024-bit Diffie-Hellman prob-
lem will only expose a small number of sessions. The difficulty
with this argument is that, if for whatever reason an attacker
decides to target a particular high-value session, that session
only enjoys 1024-bit security. In other words, even though
only one session may be broken, that single session may be
all the attacker needs.

VI. CONCLUSION

While the need for TLS forward secrecy has become more
widely discussed over the recent years, it is critical that servers
are configured and implemented correctly, and not otherwise,
achieving a false sense of security. In this paper, we first
investigate the deployment of various cryptographic algorithms
of 473,802 TLS sites and reported that the majority of DHE-
enabled sites are configured with weak DH parameters. We
ran two performance experiments to evaluate various cipher
suites that support forward secrecy, and point out that forward

secrecy using elliptic curve cryptography is actually free in the
face of traditional RSA algorithms. Lastly, we analyze client-
side latencies in the wild measured from our ad experiment,
and observe that ECC-based forward secrecy is also free on the
client-side (although some Windows clients may experience
a one-time delay for downloading the root certificate). To
conclude, we recommend websites to move away from the
RSA key exchange to provide forward secrecy, and deploy
the ECDHE key exchange over the much slower DHE.
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APPENDIX

A. SSL/TLS protocol versions

Table X presents the percentage of unique hosts that support
each SSL/TLS protocol version (out of 473,802 unique hosts
that completed our TLS scan). Each unique host may support
multiple protocol versions. In comparison to Lee et al.’s survey
in November 2006 [9], the most significant difference is that
SSLv2 support has dramatically reduced from 85% down to
22%, while TLSv1.1 and TLSv1.2 have slowly gained some
adoption. Our results of TLS adoption roughly match a recent
survey by SSL Pulse as of August 2013 [11].

TABLE X: Protocol version support

Version Hosts SSL Pulsea IMC’07

SSLv2 105,239 (22.2%) 26.9% 85.37%
SSLv3 470,409 (99.2%) 99.7% 97.92%
TLSv1 471,458 (99.5%) 99.3% 98.36%
TLSv1.1 79,890 (16.8%) 15.4%
TLSv1.2 84,406 (17.8%) 17.8%

a SSL Labs [11] surveyed 168,088 sites as of August 2013.

B. Encryption methods

Table XI compares the percentage of unique hosts that
support each encryption method and key size. We show, in
a separate column, the percentage of including all protocol
versions, and the percentage for TLSv1.2 specifically. Overall,
we observe that 3DES is currently the most supported cipher.
Both RC4-128 and AES-128 have more than 90% adoption.
Interestingly, 256-bit AES has no less adoption rate than 128-
bit AES. Comparing to the survey in 2006 [9], we observe a
dramatic increase in AES-128 adoption from 2.05% to 90.3%.
Also, support for DES and RC2 have dropped significantly.

TABLE XI: Encryption method support

Method Hosts TLSv1.2a IMC’07

3DES-168 446,119 (94.1%) 81,085 (96.0%) 97.50%
RC4-128 436,994 (92.2%) 77,271 (91.5%) 98.58%
AES-256 428,176 (90.3%) 82,191 (97.3%) 56.37%
AES-128 428,011 (90.3%) 82,420 (97.6%) 2.05%
DES-56 153,243 (32.3%) 10,400 (12.3%) 62.29%
Camellia-128 150,421 (31.7%) 26,656 (31.5%)
Camellia-256 150,443 (31.7%) 26,637 (31.5%)
RC4-40 127,209 (26.8%) 7,725 (9.1%) 91.75%
RC2-40 124,890 (26.3%) 7,677 (9.0%) 90.31%
DES-40 114,036 (24.0%) 7,715 (9.1%) 66.55%
SEED-128 85,272 (17.9%) 16,837 (19.9%)
RC2-128 81,570 (17.2%) 0 (0.0%) 83.78%
AES-GCM-128 56,098 (11.8%) 56,098 (66.5%)
AES-GCM-256 55,614 (11.7%) 55,614 (66.5%)
IDEA-128 37,735 (7.9%) 8,807 (10.4%)
Null 443 (0.0%) 30 (0.0%)
a This column shows results for only TLSv1.2.

Unfortunately, almost a third of all TLS sites still support
DES-56, which is considered insecure. Roughly a quarter of
all TLS sites support 40-bit encryption, including RC4-40,
RC2-40 and DES-40. We even found 443 sites supporting null
ciphers. Lastly, we observe that the new AES Galois Counter
Mode (AES-GCM) cipher is enabled on 66.5% of the TLSv1.2
sites. AES-GCM is immune to BEAST [41] and the Lucky 13
timing attack [42].

C. Message authentication methods

Table XII shows the website support of different message
authentication methods. SHA-1 is pervasively (99.9%) sup-

http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html
http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html
http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
http://www.alexa.com/topsites
http://sourceforge.net/projects/sslscan/
http://sourceforge.net/projects/sslscan/
http://www.openssl.org
https://bugzilla.redhat.com/show_bug.cgi?id=319901
https://www.cabforum.org/Baseline_Requirements_V1.pdf
https://www.cabforum.org/Baseline_Requirements_V1.pdf
https://www.imperialviolet.org/2013/06/27/botchingpfs.html
https://www.imperialviolet.org/2013/06/27/botchingpfs.html
http://blog.ivanristic.com/2013/08/increasing-dhe-strength-on-apache.html
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https://bugs.openjdk.java.net/browse/JDK-6521495
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https://httpd.apache.org/docs/2.4/programs/ab.html
http://www.w3.org/TR/navigation-timing/
http://www.w3.org/TR/navigation-timing/
http://support.microsoft.com/kb/931125#MT5
http://support.microsoft.com/kb/931125#MT5
http://vnhacker.blogspot.com/2011/09/beast.html
http://vnhacker.blogspot.com/2011/09/beast.html


ported, while MD5 has dropped from 99.83% to 72.3% since
2006 [9]. Here, the Authenticated Encryption with Associated
Data (AEAD) method means that the message is encrypted
and authenticated using a single key (as for AES-GCM) rather
than a separate HMAC.

TABLE XII: Message authentication
method support

Method Hosts IMC’07

SHA-1 473,462 (99.9%) 99.47%
MD5 342,618 (72.3%) 99.83%
SHA-256 69,266 (14.6%)
AEAD 56,200 (11.8%)
SHA-384 40,915 (8.6%)
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