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Abstract

A key bottleneck in a full TLS handshake is the need to
fetch and validate the server certificate before establishing
a secure connection. We propose a mechanism by which
a browser can prefetch and prevalidate server certificates
so that by the time the user clicks on an HTTPS link, the
server’s certificate is immediately ready to be used. Com-
bining this with a recent proposal called Snap Start reduces
the TLS handshake to zero round trips. Prefetching and
prevalidating certificates improves web security by making
it less costly for websites to enable TLS and by removing
time pressure from the certificate validation process. We
implemented prefetching and prevalidation and studied the
effects of four different prefetching strategies on server per-
formance. Along the way we conducted a study of OCSP,
a certificate validation mechanism. This data enabled us to
evaluate the effectiveness of prefetching and prevalidating
in reducing TLS handshake latency. In some cases we show
a factor of four speed-up over a full TLS handshake.

1. Introduction

Transport Layer Security (TLS) [15] is used to secure
and authenticate sensitive data in transit, but TLS often
presents difficulties for both clients and servers. TLS mis-
configurations and certificate warnings are common and
can result in security vulnerabilities and usability prob-
lems [4, 41]. TLS-enabled servers face a heavier load [10]
that discourages site-wide use of TLS, thereby exposing
users to session hijacking and other exploits [7]. Serving
websites over TLS also increases client latency, namely the
time until a landing page is loaded and rendered. Even small
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additions to client latency can impact website traffic, usage,
and revenue [40]. In this paper we address the client latency
imposed by TLS.

The standard TLS handshake requires two round trips
before a client or server can send application data. The net-
work latency imposed by the handshake impacts user ex-
perience and discourages websites from enabling TLS. The
web browser must also validate the server’s certificate using
certificate revocation protocols such as the Online Certifi-
cate Status Protocol (OCSP) [36], adding more latency and
leading clients to cache certificate validation results. Be-
cause high latency discourages websites from enabling TLS
and forces browsers to compromise the freshness of certifi-
cate validation, there is a tradeoff between security and user
experience. Decreasing TLS handshake latency can encour-
age wider use of TLS and improve web security.

Recent proposals have mitigated some of the cost of TLS
by decreasing the number of round trips for a full TLS hand-
shake. A proposal called Fast-track removes one round trip
from the handshake when the client has cached long-lived
parameters from a previous handshake [39]. More recent
proposals work only when the client sends data first, as in
the case of HTTP. One such proposal, TLS False Start,
reduces the handshake to one round trip when whitelisted
secure cipher suites are used [28]. A third proposal, TLS
Snap Start, reduces the handshake to zero round trips when
the client has performed a full handshake with the server in
the past and has cached static parameters [24]. Even with
Snap Start, the client cannot cache the certificate’s valida-
tion status beyond its validity period, and so Snap Start can-
not always eliminate the certificate validation step from the
handshake protocol. As we will see, the latency imposed
by certificate validation greatly impacts the overall hand-
shake time. Other work has analyzed TLS performance
when clients and servers authenticate each other with a pre-
shared symmetric key [9], but this is not the case for most



web traffic.
In this paper, we introduce server certificate prefetch-

ing and prevalidation, a method by which web browsers
can perform zero round trip Snap Start handshakes with a
server even if the browser has never seen the server before.
In addition to enabling Snap Start handshakes, certificate
prefetching allows the client to prevalidate the certificate,
so that certificate validation does not lead to perceived la-
tency for the user. By allowing browsers to use Snap Start
more often and by removing certificate validation from the
time-critical step of a page load, prefetching can encourage
servers to enable TLS more widely and allow browsers to
verify certificate status more often and strictly.

The Chromium browser uses DNS prefetching, in which
DNS resolutions are done long before they are needed. Our
work applies prefetching to certificates, which has the addi-
tional benefit of enabling certificate validation before a user
clicks on a link.

1.1. Contributions

• We propose server certificate prefetching and preval-
idation as a mechanism that significantly speeds up
the full TLS handshake. We discuss four certificate
prefetching strategies: (1) prefetch from DNS as part
of a DNS domain-name resolution, (2) prefetch us-
ing an HTTP request to the server itself, (3) prefetch
with an HTTP request to a content distribution net-
work (CDN), and (4) prefetch using a truncated TLS
handshake with the server. Once the server certificate
is prefetched, the browser applies prevalidation to the
certificate either by consulting a certificate revocation
list (CRL) or by communicating with an online OCSP
responder.

• We present detailed statistics from OCSP responders
in the wild, including measurements of the validity du-
rations and response times. We observe a noticeable
penalty for TLS connection time due to OCSP. This
data shows the strong benefits of certificate prevalida-
tion, which eliminates the expensive OCSP check from
the critical path. We also identify an interesting attack
on private browsing modes that results from the imple-
mentation of OCSP in all major browsers other than
Firefox.

• We implemented two prefetching methods (HTTP and
DNS) in the open-source browser Chromium. Our
implementation integrates with an experimental im-
plementation of Snap Start in Chromium to obtain a
highly optimized zero round trip TLS handshake pro-
tocol. We also implemented server-side Snap Start
in OpenSSL to study the effects of prefetching and
prevalidation on a TLS server’s performance. We

Client Server

ClientHello −−−−−−→
ServerHello

Certificate
←−−−−−− ServerHelloDone

ClientKeyExchange
[ChangeCipherSpec]
Finished −−−−−−→

[ChangeCipherSpec]
←−−−−−− Finished

HTTP request −−−−−−→
←−−−−−− HTTP response

Figure 1. A standard TLS handshake, with
RSA key exchange and no client certificate.

present results of experiments comparing multiple
prefetching and prevalidation strategies and demon-
strate their benefits.

2. Background

In this section, we review the features of TLS, Snap Start,
DNS, and OCSP that are relevant to certificate prefetching.

2.1. Transport Layer Security

TLS is a protocol for encrypting and authenticating traf-
fic between a client and a server [15]. To set up a secure
connection, the client and server perform a handshake in
which each party can authenticate itself by providing a cer-
tificate signed by a certificate authority. Using a cipher suite
negotiated in the handshake, the client and server agree on a
key to secure the application data that is sent after the hand-
shake.

On the web, TLS provides privacy and data integrity for
HTTP traffic between a web browser and a website. Fig-
ure 1 shows a full TLS handshake using RSA key exchange
and no client certificate, which is a common configuration
on the web. The ClientHello and ServerHello establish
an agreement between the client and the server on which
version of TLS and which cipher suite to use. These ini-
tial messages also allow the client and server to exchange
fresh random values used in deriving the session key, which
prevents message replay. The client’s random value in-
cludes the client’s clock time. After the server has received
the ClientKeyExchange message, both the client and the
server can derive the master key with which the application
data is encrypted. The ChangeCipherSpec messages in-
dicate to the other party that subsequent messages will be



encrypted with the negotiated cipher suite. Finished mes-
sages contain a hash of the entire handshake to ensure to
both parties that handshake messages have not been altered
by a network attacker. The client only sends the first appli-
cation data, in this case an encrypted HTTP request, after
two round trips between the client and server.

TLS allows connections to be established by resuming
previous sessions. If a session is to be resumed in the future,
the server provides a session ID in the ServerHelloDone
message of the full handshake. To resume a session, the
client begins a resume handshake by sending the saved ses-
sion ID in its ClientHello. An extension called TLS Ses-
sionTicket allows session resumption without server-side
state [38]. If the client and server both include empty
SessionTicket extensions in their Hello messages, then the
server sends a NewSessionTicket message after receiving
the client’s Finished message. The NewSessionTicket
contains encrypted and authenticated state that the server
needs to resume the session. To resume a session, the client
sends its cached session ticket in the SessionTicket exten-
sion in its ClientHello. Session tickets are used to enable
Snap Start handshakes that can be resumed.

A proposal called TLS False Start, enabled by default in
Google Chrome as of version 9 [5], removes one round trip
from the TLS handshake [28]. In a False Start handshake,
the client sends application data immediately after sending
its Finished message, without waiting for the server’s Fin-
ished message. The server buffers the encrypted applica-
tion data until after it has sent its Finished message, and
then it processes the encrypted record. The False Start pro-
posal argues that, as long as the client has negotiated a se-
cure cipher suite, the encrypted data can only be decrypted
by the expected peer. If an attacker has interfered with the
handshake, neither the server nor the attacker will be able
to decrypt the data that the client sent preemptively.

The hidden costs of TLS handshakes. A little-known
but significant contributor to the cost of TLS is the modi-
fied browser caching behavior under HTTPS. We give two
examples.

First, Internet Explorer will not use locally cached
HTTPS content without first establishing a valid TLS con-
nection to the source web site [29]. While web servers can
use a Cache-Control header to tell the browser that cer-
tain content is static and can be used directly from cache,
Internet Explorer ignores this header for HTTPS content
and insists on an HTTPS handshake with the server be-
fore using the cached content (in IE9 this session is used to
send an unnecessary If-Modified-Since query). This
behavior is especially damaging for sites who use a con-
tent distribution network (CDN) since IE will insist on an
HTTPS handshake with the CDN before using the cached
content. These redundant handshakes, which include a cer-

Client Server

ClientHello −−−−−−→
(with Snap Start extension)

NewSessionTicket*
[ChangeCipherSpec]

Finished
←−−−−−− HTTP response

Figure 2. A TLS Snap Start handshake.
The client’s ClientKeyExchange, ChangeCi-
pherSpec, and Finished messages, as well as
the first HTTP request, are all sent in an exten-
sion in the ClientHello. Asterisk (*) indicates
an optional message.

tificate validation check, discourage web sites from using
HTTPS. Our approach to prevalidating certificates greatly
reduces the cost of these handshakes.

Second, some browsers, such as Firefox, are reluctant to
cache HTTPS content unless explicitly told to do so using
a Cache-Control: public header [6]. Websites
that simply turn on TLS without also specifying this header
see vastly more HTTPS requests for static content. This
issue has been fixed in Firefox 4.

2.2. TLS Snap Start

Figure 2 shows the message flow of a TLS Snap Start
handshake [24]. The client must have performed a full TLS
handshake in the past. In this full handshake, the client
sends an empty Snap Start extension, and the server echoes
a Snap Start extension that includes a selected cipher suite
and a value called an orbit. The orbit is made up of eight
bytes chosen by the server, and it helps the server synchro-
nize the rejection of replayed messages across multiple ge-
ographically separated locations. Since the server does not
provide its own random value in a Snap Start handshake, it
must keep track of client randoms that it has seen within a
certain time interval, and it rejects handshakes that include
an orbit different than its own or a client time older than
its chosen allowable interval. By assigning a different or-
bit to each of its geographically separate server locations, a
website can ensure that a handshake with one of its server
locations cannot be replayed to a server in another location,
since the latter server will reject the incorrect orbit.

By caching the server certificate, selected cipher suite,
and orbit, the client can later perform a Snap Start hand-
shake. In a Snap Start handshake, the client sends a Snap
Start extension in its ClientHello. The extension includes
the server’s orbit value, twenty “suggested” random bytes,
a hash of the server’s handshake messages (which the client
predicts using its cached information), and TLS ciphertext



records, including ClientKeyExchange, ChangeCipher-
Spec, Finished, and the first HTTP request.

Upon receiving a full Snap Start extension in a Clien-
tHello, the server forms its server random from the twenty
suggested random bytes, the orbit, and the time included in
the client random. Since the server does not choose its ran-
dom value, it must prevent replay attacks by rejecting in-
correct orbit values, requiring the time in the ClientHello to
be within some interval of the server’s current clock time,
and keeping track of client-suggested random values that
it has already seen within this interval. Since the server
rejects client times that are older than its allowable inter-
val, the client and server clocks must be synchronized to
some degree for a Snap Start handshake to be successful.
Since the client must be able to predict the contents of the
server’s handshake messages, the ServerHello cannot in-
clude a session ID. Instead, the connection can use session
tickets, since NewSessionTicket is sent after the client’s
Finished message and the client only needs to predict up to
the ServerHelloDone message.

If the client has sent a valid Snap Start extension, the
server does not send its handshake messages. The server
processes the records in the Snap Start extension to derive
the master key and validate the handshake. It then sends
its Finished message, processes the first HTTP request,
and sends an encrypted HTTP response. Overall, no ex-
tra round trips are added to the interaction beyond what is
needed to process an unencrypted HTTP request.

Before starting a Snap Start session, if the cached cer-
tificate’s validation status from a previous handshake has
expired, the browser must validate the server’s certificate
by consulting a CRL or by issuing an OCSP query. Hence,
while Snap Start reduces round trips with the web server,
the browser must in some cases still communicate with a
certificate validation authority before setting up the connec-
tion. Our OCSP study (Section 3) shows that this step is
quite costly and happens often. Our approach to prevali-
dation removes this costly step from the critical path, thus
enabling the full benefits of Snap Start.

2.3. DNS prefetching

When establishing connections with web servers,
the web browser relies on the Domain Name System
(DNS) [34] to translate meaningful host names into nu-
meric IP addresses. The IP addresses of recently resolved
domain names are typically cached by the local DNS re-
solver, e.g. the web browser or operating system. If the
resolution of a domain name is not locally cached, the DNS
resolver sends requests over the network to DNS servers
which answer the query by itself, or by querying other name
servers recursively. Previous studies reveal that DNS reso-
lution times cause significant user perceived latency in web

surfing, more so than transmission time [12]. To increase
responsiveness, modern browsers such as Google Chrome
implement DNS prefetching (or pre-resolving), which re-
solves domain names before the user clicks on a link [17].
Once the domain names have been resolved, when the user
navigates to that domain, there will be no effective user de-
lay due to DNS resolutions.

Web browsers deploy various heuristics to determine
when DNS prefetching should be performed. A basic ap-
proach is to scan the content of each rendered page, and
resolve the domain name for each link. In Google Chrome,
the browser pre-resolves domain names of auto-completed
URLs while the user is typing in the omnibox. In addition,
DNS prefetching may be triggered when the user’s mouse
hovers over a link, and during browser startup for the top
10 domains. Google’s measurements show that the aver-
age DNS resolution time when a user first visits a domain
is around 250 ms, which can be saved by DNS prefetch-
ing [37].

Browser vendors also allow web page authors to con-
trol which links on their pages trigger DNS preresolutions.
When a web page includes a tag of the form

<link rel="dns-prefetching" href="//domain">

then domain will be preresolved. Further, a web page can
use a

<meta http-equiv="x-dns-prefetch-control">

tag to specify that certain links should or should not be pre-
resolved.

We extend the DNS prefetching architecture in modern
browsers to also prefetch and prevalidate TLS server certifi-
cates, as we describe in Section 4.3. Our experiments show
significant improvements in TLS handshake performance.

2.4. Certificate validation

In the X.509 [14] public key infrastructure, a certifi-
cate issued by a certificate authority (CA) binds a public
key with an individual, commonly a domain name. Web
browsers determine the authenticity of a HTTPS website by
validating the server certificate obtained via the TLS hand-
shake. Fundamentally, a server certificate must be signed
by a trusted source. Web browsers and operating systems
come with a pre-installed list of trusted signers in their root
CA store. More often, the root CAs will not directly sign
certificates due to security risks, but delegate authority to
intermediate CAs that actually sign the certificates. There-
fore, the browser should verify that the leaf certificate is
well-rooted, or bundled with a certificate chain leading to a
trusted root CA.

To determine the validity period of a public key certifi-
cate, each certificate specifies the date it becomes valid, and



the date it expires. In addition, X.509 defines mechanisms
for the issuing CA to revoke certificates that haven’t expired
but should no longer be trusted, e.g. when the private key
corresponding to the certificate has been compromised, or
more often because the certificate was reissued. The com-
mon certificate revocation checking mechanisms are Cer-
tificate Revocation Lists (CRL) and the Online Certificate
Status Protocol (OCSP).

2.4.1. CRL. A CRL [14] is a list that contains serial num-
bers of certificates that are revoked, signed by a CA. Web
browsers may download CRLs published by CAs to ver-
ify the revocation status of a certificate. The location of
the CRL for a certificate is indicated by the CRL distri-
bution point extension. However, downloading a complete
list of all unexpired certificates that have been revoked can
be cumbersome, especially for large CAs, which can issue
CRLs that are a megabyte in size [43]. Alternatively, the
CAs may issue delta CRLs which only list the certificates
whose revocation statuses have changed since a previous
complete CRL cached by the client. Delta CRL requires
support on both CAs and clients and has not been widely
deployed in practice.

2.4.2. OCSP. OCSP [36] was introduced as an alternative
to CRLs. Web browsers can check whether a specific cer-
tificate has been revoked by asking the OCSP responder
for that certificate. The location of the OCSP responder
for each certificate is indicated by the authority informa-
tion access (AIA) extension. Since an OCSP response is
typically smaller than a CRL, it is more feasible for a CA
(or the delegated OCSP signing authority) to issue OCSP
responses with shorter validity intervals (10 days maximum
recommended by Mozilla [35], and 2 weeks recommended
by Microsoft [32]), defined with the thisUpdate and nex-
tUpdate fields.

In practice, we observe that the actual OCSP response
caching behaviors may vary on different web browsers and
operating systems. On Windows, Internet Explorer, Safari,
and Google Chrome all use CryptoAPI to perform certifi-
cate validation, which shares OCSP response caches main-
tained by the operating system and cleared on expiration.
Similarly on Mac OS X, Safari and Google Chrome both
use Security Framework API and share OCSP response
caches maintained by the operating system and cleared on
expiration. For Opera on all platforms, OCSP responses are
cached by the browser, which are cleared on expiration and
also when the user clears private data. For Firefox on all
platforms, OCSP responses are cached by the browser using
NSS, independent of operating system caches. In particular,
the OCSP cache is stored in memory and cleared when the
program closes, or on expiration. In addition, Firefox forces
a maximum OCSP response lifetime of 24 hours regard-
less of longer expiration times. On Linux, Google Chrome

also uses NSS and stores OCSP caches in memory. Note
that shorter OCSP lifetimes may provide better freshness,
but induce more frequent OCSP lookups. Furthermore, we
discovered that when OCSP checking is performed for the
whole certificate chain, multiple OCSP requests are not per-
formed in parallel, which may result in longer delays [21].

Although all major browsers support OCSP checking,
recent studies have revealed that the implementations of
OCSP checking are inconsistent, in particular the warn-
ing prompts and fallback mechanisms on status check fail-
ures [16]. Some browsers ignore bogus OCSP responses,
while all avoid treating such errors as fatal; otherwise, web-
sites would have to rely on the availability of OCSP respon-
ders. Researchers have suggested that current implementa-
tions of certificate revocation mechanisms in browsers are
flawed due to lenient checking [26], as evidenced during
the Comodo and DigiNotar CA security breaches [13, 46],
which caused browser vendors to patch their browsers in-
stead of relying on revocation. One possible solution would
be OCSP stapling, in which the TLS server provides the
OCSP response during the TLS handshake. This would
effectively provide fresh OCSP responses and avoid ad-
ditional OCSP lookups on the client. However, current
implementations of OCSP stapling do not support multi-
stapling, needed for intermediate CAs. Even if allowed, the
responses might be too large to fit in the server’s initial con-
gestion window and result in additional round trips [27].

OCSP is mandatory for extended validation (EV) certifi-
cates [8] and EV certificates use dedicated OCSP respon-
ders. If both CRL and OCSP extensions are present in the
certificates, web browsers will generally prefer to use OCSP
rather than download a large CRL.

Regardless of using CRL, OCSP, or OCSP stapling,
we propose performing certificate validation during the
prefetching phase, such that more strict and frequent valida-
tion checking can be obtained without impacting user expe-
rience. We note that some browsers do implement preval-
idation, either by periodically validating certificates in the
disk cache in CryptoAPI [33], or by concurrently validat-
ing certificates during the DNS lookup phase for previously
visited HTTPS websites in Google Chrome. However, ex-
isting prevalidation mechanisms are not effective for unvis-
ited websites, therefore we propose prefetching server cer-
tificates in advance. In the case that OCSP checking may
be removed in the future due to wider use of short-lived cer-
tificates, certificate prefetching will still be beneficial, sim-
ply because certificates will expire more frequently and full
TLS handshakes will more often be required.

OCSP and private browsing. Most modern browsers im-
plement a private browsing mode, designed to let users visit
websites without leaving traces of their visits to these sites
on their computer [3]. An attacker who takes control of the



user’s machine after the user exits private browsing should
not be able to determine what the user did while in private
mode.

OCSP permits an attack on private browsing modes in all
major browsers, except Firefox, on both Windows and Mac
OSX. As mentioned before, IE, Chrome, and Safari use the
Windows CryptoAPI for certificate validation. When Win-
dows issues an OCSP query, it caches the result as spec-
ified by the nextUpdate field. Unfortunately, CryptoAPI
provides no interface for removing specific entries from the
cache. As a result, when the browser exits private brows-
ing mode it does not remove the newly acquired OCSP re-
sponses from the cache. An attacker who wishes to learn
what the user did while in private browsing mode need only
dump the Windows OCSP cache. The contents of the cache
divulge the identity of HTTPS websites visited. A similar
attack applies to browsers on Mac OSX who use Apple’s
Security Framework API.

To give an example we use the Windows certutil
tool [31] that can be used to manipulate the OCSP cache.
To view the cache, the attacker issues the command

certutil -URLcache ocsp

on the browser’s machine. A truncated sample output is

http://ocsp.thawte.com/MFEwTzBNMEswSTAJBgUrDgM...
http://ocsp.thawte.com/MEUwQzBBMD8wPTAJBgUrDgM...

In this example, Thawte’s OCSP responder was queried
twice, and the query paths contain the certificates’ serial
numbers. The attacker can search for a web site whose
certificate’s serial number matches the query and learn
what web sites were visited while the user was in private
mode. Fixing this problem may be difficult since it requires
changes to CryptoAPI. Once fixed, browsers will need to
obtain fresh OCSP responses after switching from private
browsing mode to normal mode, and certificate prefetching
can help mitigate the impact of these extra checks.

3. OCSP measurements

3.1. Experimental setup

To collect statistics of OCSP responses in the wild, we
ran experiments on the Perspectives system [47]. Perspec-
tives has a collection of network notary servers that peri-
odically probe HTTPS servers and collect public key cer-
tificates, which allows clients (using our browser exten-
sions) to compare public keys from multiple network van-
tage points. In this work, we extended the Perspectives sys-
tem to probe OCSP responders for certificate revocation sta-
tuses if the queried certificate was configured with an OCSP
responder URL. The data collected on the notary servers
include the revocation status of the certificate, the validity

lifetime of the OCSP response, and the latency of the OCSP
lookup.

In addition to probing OCSP responders from the no-
tary servers, we performed latency measurements for OCSP
lookups on clients that have installed our Perspectives ex-
tension for Google Chrome. For each certificate that was
fetched from an HTTPS website, we performed an OCSP
request and measured the elapsed time to complete the
lookup. As of May 2011, there were 242 active clients con-
tributing data for this measurement. The notary servers re-
ceive data from clients with our Google Chrome extension
as well as the previously deployed Firefox extension.

3.2. Results

3.2.1. OCSP response validity lifetime. Table 1 gives the
OCSP response validity lifetime for certificates from OCSP
responders for which the notary servers have performed
more than 1000 OCSP lookups. We observe that 87.14% of
the OCSP responses are valid for a period of equal to or less
than 7 days. The minimum observed lifetime was 13 min-
utes. Analyzing the lifetime of OCSP responses helps us
determine how often a prefetched OCSP response would ex-
pire before the certificate is actually used. Shorter OCSP re-
sponse validity lifetimes reduce the effectiveness of OCSP
response caching.

3.2.2. OCSP lookup response time. Figure 3 shows the
distribution of the OCSP lookup response times that we
recorded. The data shows that although 8.27% of the probes
took less than 100 ms to complete, a majority of the OCSP
probes (74.8%) took between 100 ms and 600 ms. In our
measurements, the median OCSP lookup time is 291 ms
and the mean is 497.55 ms. Table 2 gives the response
time statistics breakdown of OCSP responders for which
at least 500 OCSP probes were performed. Our data for
OCSP responder response times only include measurements
performed at the client side (using the Perspectives exten-
sion for Google Chrome) and not on the notary servers. We
believe the measurements from real web clients more ac-
curately reflect the latency experienced by a user. We ob-
serve that 95.3% of the OCSP responses are cached by the
OCSP responders and are not generated at the time of re-
quest. These OCSP responders therefore do not support the
optional OCSP nonce specified in RFC 2560. If OCSP re-
sponders are required to support nonces and generate re-
sponses at the time of request, we expect an increase in re-
sponse time for the OCSP responder to generate a response.

The actual response time of a user navigating to a pre-
viously unvisited HTTPS website typically consists of sev-
eral round trip times: the DNS lookup, the TCP three-way
handshake, the TLS handshake, the OCSP lookup (usually
blocking the completion of the TLS handshake), and fi-
nally the HTTP request-response protocol. As previously



OCSP responder
Number
of OCSP
lookups

Number
of distinct
certificates

Validity lifetime

Avg Min Max
http://EVSSL-ocsp.geotrust.com 2035 198 6 days 23 hours 12 hours 7 days 11 hours
http://ocsp.cs.auscert.org.au 1060 97 4 days 4 days 4 days
http://ocsp.cacert.org/ 2381 76 3 hours 15 minutes 23 hours
http://ocsp.usertrust.com 3846 315 4 days 4 days 4 days
http://ocsp.godaddy.com 90925 4139 7 hours 6 hours 11 hours
http://ocsp.comodoca.com 56928 4581 4 days 4 days 4 days
http://ocsp-ext.pki.wellsfargo.com/ 2612 53 20 hours 13 minutes 1 day
http://ocsp.entrust.net 18691 1474 7 days 14 hours 7 days 8 days 4 hours
http://ocsp.netsolssl.com 4117 570 4 days 4 days 4 days
http://EVIntl-ocsp.verisign.com 64403 1566 7 days 7 days 86 days 7 hours
http://ocsp.digicert.com 92093 1672 7 days 7 days 7 days
http://ocsp.starfieldtech.com/ 9016 480 11 hours 6 hours 1 day 5 hours
http://ocsp.webspace-forum.de 2228 29 4 days 4 days 4 days
http://ocsp.startssl.com/sub/class1/server/ca 4963 348 5 hours 1 hour 1 day 4 hours
http://ocsp.startssl.com/sub/class2/server/ca 4597 160 6 hours 1 hour 1 day 4 hours
http://ocsp.serverpass.telesec.de/ocspr 2212 248 1 hour 1 hour 1 hour
http://ocsp.gandi.net 1060 78 4 days 4 days 4 days
http://EVSecure-ocsp.verisign.com 108993 465 7 days 7 days 7 days
http://ocsp.globalsign.com/ExtendedSSL 2441 115 7 days 7 days 7 days
http://ocsp.verisign.com 247251 12433 7 days 7 days 20 days 21 hours
http://ocsp.thawte.com 134321 3811 7 days 7 days 7 days
http://ocsp.tcs.terena.org 7823 675 4 days 4 days 4 days

Table 1. Validity lifetime of OCSP responses.

Figure 3. Cumulative distribution of OCSP lookup response times.

OCSP responder Number of lookups Response time
Median (ms) Min (ms) Max (ms) Standard deviation

http://EVSecure-ocsp.verisign.com 938 167 25 7235 610.76
http://ocsp.digicert.com 1372 252 12 12303 759.64
http://ocsp.godaddy.com/ 741 101 20 4832 515.53
http://ocsp.thawte.com 4209 564 10 12376 976.09
http://ocsp.verisign.com 1389 279 21 10209 743.53

Table 2. Response times of OCSP responders.



introduced, DNS prefetching removes round trips for DNS
lookups at the time of user navigation, while TLS False
Start removes a round trip for the first HTTP request. In this
paper, we propose certificate prefetching along with preval-
idating to effectively remove the round trips for the TLS
handshake and the OCSP lookup, which may reduce hun-
dreds of milliseconds of perceived latency on average.

3.3. Lessons

Our measurements show that OCSP validation is a sig-
nificant source of user-perceived latency. Without cer-
tificate prefetching and prevalidation, reducing latency re-
quires weakening security (for example, by extending valid-
ity periods, or by using cached responses with no nonces).
Further, browsers often refuse to treat negative or nonexis-
tent OCSP responses as fatal, meaning that OCSP has lit-
tle security benefit. For these reasons, Google has recently
floated plans to phase out OCSP in its Chrome browser, re-
verting to pushing CRLs via frequent browser patches [25].
Future directions for certificate validation may also benefit
from certificate prefetching. As discussed in Section 2.4.2,
short-lived certificates will require more frequent full TLS
handshakes. Like OCSP, notary systems such as Perspec-
tives [47] and Convergence [30] require round trips for val-
idation, and the latency of these round trips can be hidden
from the user by doing them in advance of the page load.

4. Server certificate prefetching and prevalida-
tion

To enable this reduced latency, a server must allow
clients to prefetch its handshake information by publishing
its certificate, cipher suite choice, and orbit. (For simplic-
ity, we refer to the prefetching of this information and the
prevalidation of the certificate as “certificate prefetching.”)
The client obtains this information when it is likely that the
user might navigate to the website. The browser can use the
same triggers that it uses to pre-resolve hostnames to de-
termine when certificate prefetching is useful: for example,
when the user is typing in the omnibox or when a user is
viewing a page with links to HTTPS websites. In this sec-
tion, we discuss two major benefits of certificate prefetch-
ing, and describe various methods for clients to download
server information.

4.1. Benefits of prefetching

4.1.1. Enable abbreviated handshakes. After prefetch-
ing a server’s certificate, a web browser can use Snap Start
without having performed a full handshake with the server
in the past. Studies of user browsing behavior suggest

that at least 20% of websites that a user visits in a brows-
ing session are sites that the user has never visited be-
fore [2, 18, 11, 42]. These studies may underestimate how
often certificate prefetching will be useful, since Snap Start
without prefetching cannot be used when the browser cache
has been cleared since the browser’s last full handshake
with a server.

4.1.2. Enable prevalidation of server certificates.
Prefetching the server certificate allows the browser to vali-
date the certificate in the background before the user nav-
igates to the website. Our measurements in Section 3
show that certificate validation performed during the TLS
handshake introduces significant latency. Provided that the
certificate status is not in the client’s cache, a Snap Start
handshake with a prefetched and prevalidated certificate
is significantly faster than a Snap Start handshake without
prefetching.

As discussed in Section 2.4.2, modern browsers com-
monly cache OCSP responses across public and private
browsing modes. Further, Opera is the only one of the five
browsers that clears the OCSP cache when the user opts to
clear all private data. The persistence of OCSP responses
is a privacy leak, and we note that, once fixed, certificate
prevalidation will become more important because OCSP
responses will be cached less frequently.

4.2. Prefetching methods

A naı̈ve prefetching method is to open a TLS connection
to the server and cache the necessary information needed
to perform a Snap Start handshake. These dummy connec-
tions basically perform a standard TLS handshake with the
server, and would eventually disconnect on timeout. How-
ever, many clients performing TLS dummy handshakes may
negatively impact server performance and also flood the
server’s session cache. We discuss four options for certifi-
cate prefetching that add little or no server load.

4.2.1. Prefetching with a truncated handshake. To per-
form a Snap Start handshake, a web browser requires the
server’s certificate, cipher suite choice, and orbit. In a stan-
dard TLS handshake, the browser has obtained all this infor-
mation by the time it receives the ServerHelloDone mes-
sage, so the browser can prefetch the certificate and then
truncate the handshake before either party performs any of
the TLS handshake’s expensive steps.

The browser can truncate the handshake by using the
alert protocol that TLS specifies. An alert may be sent
at any point during a TLS connection, and alerts specify
a description (for example, unexpected message or
bad record mac) and an alert level of warning or fatal.
If either party sends a fatal alert at any point during the con-



nection, then the server must invalidate the session identi-
fier.

Thus the browser can prefetch a server’s certificate in-
formation by sending a ClientHello message with an empty
Snap Start extension and sending a fatal alert after receiving
the ServerHelloDone message. The alert ensures that the
server closes the session, so that prefetching does not flood
the server’s session cache or keep the socket open longer
than necessary. After caching the appropriate information
and validating the certificate, the browser can perform a
Snap Start handshake if the user actually navigates to the
website.

4.2.2. Prefetching via HTTP GET. For a web browser
to prefetch a certificate via a HTTP GET request to the
server, the server must place the concatenation of its certifi-
cate, supported cipher suites, and orbit in a file at a stan-
dardized location. (In our implementation, we prefetched
from http://www.domain.com/cert.txt.) The
web browser retrieves the file, parses and validates the cer-
tificate, and caches all the information for use in a Snap
Start handshake later.

Transmitting certificates in plaintext over HTTP does
not compromise security, as certificates are sent in plaintext
during the normal TLS handshake.

4.2.3. Prefetching from a CDN. To avoid placing any ex-
tra load on the server, a client can attempt to prefetch certifi-
cate information from a CDN, for example by sending a re-
quest to http://www.cdn.com/domain.com.crt.
The browser cannot know in advance which CDN a partic-
ular website uses to host its certificate information, so it can
send requests to multiple CDNs to have a high probability
of successfully prefetching a server’s certificate. Previous
research suggests that sending requests to a small number
of CDNs will cover a large percentage of the CDN market
share [20]. Alternately, a DNS TXT record can hold the
location where a browser should prefetch a server’s certifi-
cate, so that the browser does not need to query multiple
CDNs. Once the web browser has successfully obtained
certificate information from a CDN, it proceeds to parse the
certificate and cache the information.

4.2.4. Prefetching from DNS. Alternatively, the server
may place its certificate information in a DNS record to of-
fload the prefetching traffic. There has been previous work
to store certificates or CRLs in DNS using CERT resource
records [22], although not widely supported in practice. For
the convenience of our prototype implementation, we stored
the server’s certificate information in a standard DNS TXT
resource record, which allow servers to associate arbitrary
text with the host name. Web browsers can prefetch certifi-
cates by querying for the domain’s TXT record, in paral-
lel with A records, during the DNS prefetching phase. Al-

though TXT records were originally provisioned to hold de-
scriptive text, in practice they have been freely used for var-
ious other purposes. For example, the Sender Policy Frame-
work (SPF) [48] uses TXT records to specify which IP ad-
dresses are authorized to send mail from that domain. We
also consider recent proposals in the IETF DNS-based Au-
thentication of Named Entities (DANE) working group that
suggest using DNSSEC to associate public keys with do-
main names. They introduce a new TLSA resource record
type that allows storing a cryptographic hash of a certificate
or the certificate itself in DNS [19].

As with HTTP GET prefetching, transmitting certificates
from DNS or a CDN does not decrease security. If the CDN
or DNS servers are compromised and serve a forged certifi-
cate, the user will be prompted with a certificate warning,
just as if an attacker had replaced a legitimate certificate in
a normal TLS handshake. Projects such as Perspectives [47]
can also help users make correct trust decisions if they re-
ceive an invalid certificate.

4.3. Implementation

We developed prototype implementations of DNS and
HTTP GET prefetching in Chromium, revision 61348, as
well as an OpenSSL prototype of Snap Start for running our
experiments. We modified Chromium’s DNS prefetching
architecture; when the browser preresolves a domain name
for a HTTPS URL, we added code to send an asynchronous
request to fetch a DNS TXT record or a text file at a known
location on the web server. If the request is successful, the
certificate is parsed out of the data and the browser sends
another asynchronous OCSP validation request. The cer-
tificate and validation status are stored in a cache, which is
checked before each TLS handshake to determine if a Snap
Start handshake is possible. Our patches for Chromium and
OpenSSL are available online [1].

In our prototype implementation, certificate prefetches
are triggered by the same heuristics that trigger DNS preres-
olutions. If browsers adopt certificate prefetching, we pro-
pose that they deploy certificate prefetching controls anal-
ogous to the DNS prefetching controls discussed in Sec-
tion 2.3. These controls can allow web page authors to opt-
in and opt-out of prefetches for specific domains, thereby
helping the browser ensure that certificate prefetching re-
quests are useful and not wasteful.

5. Prefetching experiments

Our experiments sought to answer the following ques-
tions about certificate prefetching:

• By how much does prefetching reduce user-
perceived latency? To answer this question, we com-
pared the latency of a Snap Start handshake with a



prevalidated certificate to a Snap Start handshake us-
ing online certificate validation.

• How does prefetching impact server performance?
For each certificate prefetching method, we measured
user-perceived latency and server throughput as the
server was flooded with certificate prefetching re-
quests. This data let us compare the effect of traffic
from different prefetching strategies on server perfor-
mance. We used a cloud-based service to generate load
on our test server.

5.1. Experimental setup

We used the hosting company Slicehost to acquire ma-
chines for running our experiments. Our server machine
ran Apache 2.2.17 and OpenSSL 0.9.8p with our Snap Start
prototype (on Ubuntu10.04 with 256MB of RAM and un-
capped outgoing bandwidth). On separate client machines,
we used Chromium, revision 61348 with our modifications
to support certificate prefetching and Snap Start with a
prevalidated certificate. We generated TLS 1.0 handshakes
with RSA key exchange, AES-256-CBC encryption, and
SHA-1 message authentication.

5.1.1. Comparing handshake latencies. Our first experi-
ments measure the latencies of three types of handshakes:
1.) a Snap Start handshake with a prefetched and prevali-
dated certificate, 2.) a Snap Start handshake with a cached
but not validated certificate, and 3.) a normal full TLS
handshake. We measured handshake latency by modifying
Chromium on a client machine (which had 1GB of RAM
and ran Ubuntu 10.04) to generate 500 requests one after
the other and record the latency for each request.

5.1.2. Measuring the effects of certificate prefetching on
server performance. Our next experiments compare how
different prefetching methods impact server performance.
We first measured the server’s latency and throughput when
the server is not handling any other requests. We performed
these measurements for HTTP HEAD requests, as well as
for each of the three types of handshakes above (Snap Start
with prevalidated certificate, Snap Start with online certifi-
cate validation, and normal full TLS handshake). We used
the command-line tool httping [45] to generate HTTP
HEAD requests, a Chromium client to generate TLS Snap
Start handshakes, and OpenSSL to generate normal TLS
handshakes. To measure throughput, we set up ten separate
client machines (each with 256MB of RAM and capped at
10Mbps outgoing bandwidth) making continuous requests,
and we logged each request on the server.

Some of our prefetching methods generate additional
requests to the server stemming from client certificate
prefetch requests. We therefore measured the server’s

latency and throughput as the server was flooded with
prefetching requests from clients. For each prefetching
method that affects the web server (i.e. HTTP, truncated
handshakes, and full dummy handshakes), we set up client
machines to simulate prefetching traffic using that method,
with each prefetching client hitting the server with approxi-
mately twenty requests per second. While these clients were
prefetching certificates from the web server, we again mea-
sured latency and throughput of HTTP HEAD requests and
the three handshakes. For example, to measure the impact
of truncated handshake prefetching on a web server han-
dling HTTP HEAD requests, we set up ten clients to flood
the server with truncated TLS handshakes, and then mea-
sured the latency and throughput of HTTP HEAD requests.
We repeated the experiment with the number of prefetching
clients varying from one to ten.

Since prefetching from DNS or a CDN does not affect
the web server, the control measurements (i.e. latency and
throughput for requests while there is no prefetching traf-
fic) cover those prefetching methods. The three types of
prefetching traffic for which we measured server perfor-
mance were HTTP GET requests, truncated handshakes,
and the naı̈ve method of full dummy TLS handshakes.

We also measured the data transfer overhead that a server
can expect to incur by enabling certificate prefetching and
Snap Start. The overhead is a function of the fetchthrough
rate, the proportion of prefetches that lead to an actual page
load. We measured data transfer for a HTTP GET prefetch,
a truncated handshake prefetch, a page load using Snap
Start, and a page load using a normal TLS handshake. We
assume that with no prefetching, every page load requires
a normal TLS handshake, and with prefetching, every page
load uses a Snap Start handshake. Overhead is then calcu-
lated as np+as

at , where n is the number of prefetches, p is
the bytes transferred for a prefetch, a is the number of ac-
tual page loads, s is the bytes transferred for a page load
using Snap Start, and t is the bytes transferred for a page
load using normal TLS.

5.2. Results

Table 3 shows the median and mean latency for each type
of request. Snap Start with a prevalidated certificate corre-
sponds to the situation when the client has prefetched and
prevalidated the certificate and then performs a Snap Start
handshake without needing to validate the certificate. The
row labeled Snap Start corresponds to the situation when
the client has cached the information necessary to perform
a Snap Start handshake but must validate the certificate.
The data shows that the median latency for a Snap Start
handshake with a prevalidated certificate is four times
faster than a normal TLS handshake. Moreover, preval-
idation speeds up basic Snap Start by close to a factor of



Median latency (ms) Mean latency (ms)
Snap Start, prevalidated certificate 30.45 35.58

Snap Start, no prevalidation 83.40 99.86
Normal TLS 121.82 124.11

Table 3. Latency measurements for a Snap Start handshake with prevalidated server certificate (no
verification during the handshake), a Snap Start handshake with online certificate verification, and a
normal (unabbreviated) TLS handshake.

Figure 4. Median latency and throughput for HTTP HEAD requests with different types of prefetching
traffic.

three.
Figure 4 shows how different prefetching methods affect

the server’s latency and throughput for HTTP HEAD re-
quests, as we scale up the number of prefetching clients.
For example, with ten prefetching clients, median la-
tency for HTTP HEAD requests increased by 8.5% with
HTTP GET prefetching, by 3.0% with truncated hand-
shake prefetching, and by 26.7% with full dummy hand-
shake prefetching.

In Appendix A, we give data that shows how ten
prefetching clients affected the server’s performance (la-
tency and throughput) on normal TLS handshakes, Snap
Start handshakes with unvalidated certificates, and Snap
Start handshakes with prevalidated certificates.

Figure 5 shows the data transfer overhead incurred
by HTTP GET and truncated handshake prefetching.

(Prefetching from DNS or a CDN incurs no server over-
head). Truncated handshake prefetching is about 10% less
data transfer per prefetch than HTTP GET prefetching. The
overhead varies widely depending on the fetchthrough rate,
which is determined by the browser’s prefetching strategy
and how accurately the browser can predict the user’s ac-
tions.

6. Analysis

Our experiments show that prefetching certificates al-
lows for much faster handshakes than Snap Start without
prefetching. We measured median latency for a Snap Start
handshake with a prevalidated certificate to be 64% faster
than a Snap Start handshake with an unvalidated certifi-



Figure 5. Data transfer overhead for certifi-
cate prefetching.

cate. However, this figure is probably a conservative esti-
mate of the benefits of prevalidating, due to the unusually
high speed of Slicehost’s network connection. Our mea-
surements of OCSP response times in the wild, shown in
Figure 3, show that prevalidating certificates will reduce la-
tency even more in a real-world setting. In addition to en-
abling Snap Start handshakes when the browser has never
seen a website before, certificate prevalidation is useful
when the browser has certificate information from a pre-
vious handshake but does not have its OCSP status cached.

Our experiments also show that prefetching via any of
our proposed prefetching methods has a less dramatic im-
pact on server performance than doing full dummy hand-
shakes. Truncated handshakes prefetching appears to have
the smallest effect on server performance. However, in de-
ciding between truncated handshake prefetching and HTTP
GET prefetching, clients and servers may want to consider
factors such as client-side code complexity, which we dis-
cuss below. Since prefetching via full dummy handshakes
places a heavier load on the server and also requires more
computation for the client, we conclude that full dummy
handshakes are a poor choice for prefetching.

While Snap Start and prevalidating certificates reduce la-
tency, throughput with no cover traffic is about the same for
all three types of handshakes. This is because the server
does about the same amount of computational work in each
handshake, with the main difference being how long the
socket stays open. Certificate prefetching and Snap Start
are thus mechanisms for reducing client-side latency, not

for improving server throughput.
As shown in Figure 5, for HTTP GET and truncated

handshake prefetching, data transfer overhead can be high
when the fetchthrough rate is low. If browsers prefetch ag-
gressively, then DNS or CDN prefetching will avoid incur-
ring this overhead for servers with data transfer limits. If
browsers prefetch conservatively, then data transfer over-
head is modest at less than 2x for fetchthrough rates higher
than 0.5.

6.1. Pros and cons of prefetching methods

Having observed the performance impact of each
prefetching method, we consider the benefits and draw-
backs of each method and discuss how browsers and servers
might choose which method to implement.

6.1.1. Prefetching with a truncated handshake. Like full
dummy handshakes, truncated handshakes allow a browser
to prefetch certificate information even if the server has not
taken any actions to enable prefetching. A truncated hand-
shake requires both the client and the server to do much
less work than a full dummy handshake, and as a result the
impact on the server is less dramatic. A truncated hand-
shake requires slightly more client-side code complexity
than prefetching via a HTTP GET request directly to the
server, since the TLS implementation must be modified
to truncate the handshake when prefetching. (For exam-
ple, in Chromium, we used a URLFetcher interface to
prefetch a certificate via HTTP, but making a HTTPS re-
quest that truncates after receiving ServerHelloDone re-
quires going below this abstraction to modify the TLS im-
plementation.) Truncated handshakes will also dirty server
logs; without adding a new TLS alert number, a browser
performing a truncated handshake for prefetching will have
to use an inaccurate alert such as user canceled or
internal error to close the connection.

6.1.2. Prefetching via HTTP GET. Prefetching via a
HTTP request directly to the server is the simplest prefetch-
ing method to implement in a browser, but for clients to be
able to prefetch via HTTP, the server must explicitly enable
it by creating a file with its certificate, orbit, and supported
cipher suites.

6.1.3. Prefetching from a CDN. Prefetching certificates
from a CDN has no impact on server performance, and for
a server that already uses a CDN to distribute static content,
enabling prefetching via CDN will be no more difficult than
enabling prefetching for the HTTP GET method. However,
the main drawback of prefetching from CDNs, as discussed
in Section 4.2.3, is that the browser cannot know from
which CDN to prefetch the certificate for a particular web-
site, so the browser must send requests to multiple CDNs to



increase its probability of a successful prefetch. These re-
quests can be performed asynchronously, but still use more
client bandwidth than the other methods. As a compromise,
we suggest that a DNS TXT record can hold the location
of a server’s certificate (whether it is on a CDN or on the
server itself), which allows web browsers to prefetch cer-
tificates from CDNs without making requests to multiple
CDNs.

6.1.4. Prefetching from DNS. Like CDN prefetching,
DNS certificate prefetching places no additional load on the
server, but DNS also uses minimal client bandwidth and
it is also a more accessible option for servers that don’t
already use a CDN. DNS certificate prefetching may be
slightly limited by the fact that not all domain registrars and
DNS providers support DNS TXT records [23] [44]. DNS
prefetching also has the undesirable effects of swelling DNS
records and overloading the meaning of TXT records.

7. Conclusion

Client latency from TLS handshakes costs websites in
traffic and revenue, and discourages websites from using
TLS. Server certificate prefetching and prevalidation can
enable abbreviated TLS handshakes and remove certificate
validation latency. In our tests, a Snap Start handshake with
a prevalidated certificate can be as much as four times faster
than a normal TLS handshake. We also found that 74.8%
of OCSP lookups took between 100 ms and 600 ms, so for
many users in the wild, prefetching enables an even more
dramatic speed-up over standard TLS.

Web browsers can prefetch server certificates either from
the server itself (via a truncated TLS handshake or a HTTP
GET request) or from a third party (a CDN or DNS). While
each method of prefetching has benefits and drawbacks, we
suggest that using a DNS record to notify the web browser
of the server’s certificate location may be a flexible and ef-
fective compromise.

Certificate prefetching, in addition to decreasing client
latency, allows browsers to validate certificates more fre-
quently, since prevalidation does not increase client la-
tency. We hope that certificate prefetching further encour-
ages deployment of Snap Start in web browsers and servers:
prefetching makes Snap Start applicable more often, and en-
ables websites to use TLS more widely.
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A. Additional data from prefetching experi-
ments

Tables 4 and 5 give the data from the prefetching ex-
periments discussed in Section 5. We measured mean
and median latency (in milliseconds) and throughput (re-
quests/second). Section 5 shows the effects of prefetching
traffic on HTTP GET requests, and these tables show the
effects of 10 prefetching clients on different types of TLS
handshakes.



No prefetching traffic HTTP Truncated handshake HTTPS
Median Mean Median Mean Median Mean Median Mean

Snap Start, prevalidated certificate 30.45 35.58 37.65 57.77 32.00 61.82 42.25 61.53
Snap Start 83.40 99.86 84.76 101.14 82.64 104.11 87.20 103.05

Normal TLS 121.82 124.11 126.69 137.00 125.60 213.94 130.84 273.96

Table 4. Latencies, in milliseconds, for different types of TLS handshakes with no prefetching traffic
and with ten clients generating HTTP, truncated handshake, and HTTPS prefetching traffic.

No prefetching traffic HTTP Truncated handshake HTTPS
Median Mean Median Mean Median Mean Median Mean

Snap Start, prevalidated certificate 75.00 72.25 77.00 72.79 72.50 63.89 66.00 62.88
Snap Start 76.00 76.67 70.00 68.54 72.50 70.45 61.50 56.98

Normal TLS 76.00 76.50 74.50 76.81 77.50 77.05 68.50 74.89

Table 5. Throughput, in requests per second, for different types of TLS handshakes with no prefetch-
ing traffic and with ten clients generating HTTP, truncated handshake, and HTTPS prefetching traffic.


