
Talking to Yourself for Fun and Profit
Lin-Shung Huang∗, Eric Y. Chen∗, Adam Barth†, Eric Rescorla‡ and Collin Jackson∗
∗Carnegie Mellon University, {linshung.huang, eric.chen, collin.jackson}@sv.cmu.edu

†Google, adam@adambarth.com
‡RTFM, ekr@rtfm.com

Abstract—Browsers limit how web sites can access the network.
Historically, the web platform has limited web sites to HTTP,
but HTTP is inefficient for a number of applications—including
chat and multiplayer games—for which raw socket access is more
appropriate. Java, Flash Player, and HTML5 provide socket APIs
to web sites, but we discover, and experimentally verify, attacks
that exploit the interaction between these APIs and transparent
proxies. At a cost of less than $1 per exploitation, our attacks
poison the proxy’s cache, causing all clients of the proxy to receive
malicious content supplied by the attacker. We then propose a
modification of the HTML5 WebSocket protocol that resists these
(and other) attacks. The WebSocket working group has adopted
a variant of our proposal.

I. INTRODUCTION

Browsers restrict how web applications can interact with
the network by enforcing a number of security invariants on
their use of the user’s network connection. These restrictions
are essential to the core security guarantee of the web security
model: users can safely visit arbitrary web sites and execute
scripts provided by those sites. Generally speaking, browsers
permit web applications to send well-formed HTTP requests
to arbitrary network locations (with a handful of important
restrictions) but prevent them from reading back the response
unless the server opts in via some mechanism.

A number of plug-ins relax these restrictions. For example,
both Java and Flash Player provide a mechanism for web appli-
cations to open raw socket connections. Of course, unrestricted
raw socket access to the network would be disastrous for
security. An attacker could use such a facility to wreak havoc
with any network service that relies on IP source addresses or
network connectivity for security (e.g., network devices behind
a firewall). Rather than allowing unrestricted socket access,
both Java and Flash Player limit web applications to opening
sockets to servers that have consented to such connections.

Java and Flash Player use different consent protocols. Java
uses a trivial “consent” protocol whereby Java bytecode is
implicitly authorized to open socket connections to the IP
address from which it originated. Flash Player, by contrast,
requires the server to supply a policy file over a specific port
that explicitly authorizes socket connections to a set of port
numbers. Although these protocols are widely deployed in
browsers, the protocols themselves have seen only modest
amounts of security analysis. Recently, these protocols were
shown to be vulnerable to DNS rebinding attacks [1], whereby
the consent was scoped to a host name rather than an IP
address, letting the attacker transfer his or her consent to
another network endpoint.

In our study, we show that the consent protocols used by
browsers today are vulnerable to attack in certain network
configurations involving network intermediaries, specifically
transparent proxies. Unlike traditional HTTP proxies, which
are explicitly configured and known to the client, transparent
proxies insert themselves into the transport path (e.g., by acting
as the network’s default gateway or as a bridge) and then act
as proxies without the client’s knowledge. Such proxies are
common in traffic filtering applications but also can serve as
network accelerators or proxy caches. Although colloquially
referred to as “transparent” proxies, these proxies are more
accurately termed “intercepting” proxies because, as we show
in this paper, they are not quite as transparent as their deployers
might wish.

Unfortunately, these transparent proxies often forward the
server’s consent without understanding its semantics. When
a server provides a Flash policy file authorizing a SWF to
connect to the server’s IP address on port 80, Flash Player will
allow the SWF to open a raw socket connection to the server,
not aware that the SWF is actually talking to a transparent
proxy instead of the server itself. Once the attacker has opened
a socket to the proxy server, the type of misdeeds the attacker
can perform depend on details of how the proxy behaves.

Auger [2] describes how an attacker can leverage transparent
proxies to establish connections with any host accessible by the
proxy. We introduce new attacks that can poison the proxy’s
cache for an arbitrary URL, causing all users of the proxy to
receive the attacker’s malicious content instead of the honest
server’s content. The conditions required for such an exploit are
relatively precise (i.e., a specific class of proxy behavior). To
determine whether these conditions actually arise in practice,
we conduct experiments on the Internet to see what fraction
of Internet users are vulnerable to these attacks by running an
advertisement that mounted the attacks against servers in our
laboratory. We found that 3,152 of 51,273 users (6.1%) in our
study were vulnerable to Java-based IP hijacking attacks and
2,109 of 30,045 (7%) were vulnerable to Flash Player-based
IP hijacking attacks. Furthermore, 53 of 30, 045 (0.18%) users
in our study were vulnerable to Java-based cache poisoning
attacks and 108 of 51, 273 (0.21%) were vulnerable to Flash
Player-based cache poisoning. We believe that such attacks
are critical, since every successful cache poisoning attack
would also affect all users of the vulnerable proxy (potentially
the entire enterprise), causing further impact beyond our raw
measurements. Our experiments demonstrated one successful
cache poisoning attack per $0.93 spent on advertisements.

Raw socket APIs let web applications provide functionality
that is difficult to provide with only HTTP networking APIs.
Rather than simply recommending that raw socket access be
removed from the web platform, we study the question of
how to design a consent protocol that is robust to oblivious
intermediaries. As a starting point, we consider the protocol for
HTML5’s socket API, WebSockets [3], [4]. WebSockets uses
an “in-band” consent protocol whereby the browser exchanges
messages with the server over a socket before handing the
socket over to the web application.

We show, empirically, that the current version of the
WebSocket consent mechanism is vulnerable to proxy cache
poisoning attacks. Even though the WebSocket handshake is
based on HTTP, which should be understood by most network
intermediaries, the handshake uses the esoteric “Upgrade”
mechanism of HTTP [5]. In our experiment, we find that many
proxies do not implement the Upgrade mechanism properly,
which causes the handshake to succeed even though subsequent
traffic over the socket will be misinterpreted by the proxy.

Building upon our analysis and empirical measurements on
strawman protocols, we propose improving the WebSocket
protocol by randomizing the attacker-controlled bytes sent on
the wire. By encrypting the bytes sent on the wire using a
stream cipher with a fresh random nonce for each protocol
frame, the attacker cannot choose arbitrary bytes on the wire,
making it difficult to confuse the receiver into performing
undesirable actions. Our essential insight is that protocol
designers should consider how attackers can manipulate these
protocols to exploit network intermediaries that unintentionally
proxy the consent of the remote server without understanding
its semantics.

Contributions. The main contributions of this paper can be
summarized as follows:

• We introduce a new class of attacks that poisons the
HTTP caches of transparent proxies via socket APIs in
Flash Player and Java, causing malicious content of the
attacker’s choice to be served by the proxy to all of its
users. Our experiments verify that roughly 7% of Internet
users are vulnerable to Auger’s IP hijacking attacks, while
0.2% are vulnerable to our cache poisoning attacks.

• We demonstrate these attacks on HTML5 WebSocket
strawman protocols. We propose improving the WebSocket
protocol by encrypting the bytes sent on the wire using
a stream cipher, making the payload data appear random
to network entities that are oblivious to WebSockets.
In response to our suggestion, the WebSocket protocol
working group adopted a variant of our proposal that
masks attacker-controlled bytes with XOR “encryption”
instead of a stream cipher.

Organization. The rest of this paper is organized as follows.
Section II explains the existing network access mechanisms
in browsers. Section III details our attacks on Flash Player
and Java, including our experimental verification. Section IV
demonstrates attacks on HTML5 WebSocket strawman proto-
cols and presents our proposal. Section V places our work in
the context of related work. Section VI concludes.

II. BACKGROUND: NETWORK ACCESS IN THE BROWSER

In this section, we review the network access mechanisms
browsers provide to web applications in the context of a threat
environment. Consider a network topology in which the user
connects to the Internet via a transparent proxy, as is common in
enterprise networks. The transparent proxy intercepts outbound
HTTP requests, perhaps to monitor employee network access,
to enforce a security policy, or to accelerate web traffic.

In this scenario, we wish the browser to enforce a set
of security policies that prevent malicious web sites from
interacting arbitrarily with other hosts from the client’s IP
address. Our assumption is that the user visits the malicious
web site, that the browser properly enforces its security policy,
and that the attacker has no direct control over the network
intermediaries. The relevant question, then, is what security
policy should the browser enforce on the malicious web site’s
network access?

A. Same-Origin Policy

One natural response to the threat of web attackers is to
simply forbid web applications running in the browser from
communicating with any server other than the one hosting the
application. This model, called the same-origin policy, was first
introduced for Java applets. Java was originally designed as a
general purpose programming language and so, unsurprisingly,
offers generic networking primitives, including an API that
lets the programmer request the virtual machine to open a raw
socket to an arbitrary network address and port. If the virtual
machine fulfilled these requests unconditionally, these API
would be extremely dangerous. For this reason, Java allows
network connections only to the source of the Java bytecode.1

The policy appears, a priori, safe; how much harm can you
cause if you’re talking only to yourself?

Unfortunately, Java’s notion of “source” has proved to be
quite problematic. One natural definition of “source” is to
simply compare host names, but there is no guarantee that the
same host name will always be bound to servers controlled by
the same entity. In particular, if the Java virtual machine does
its own name resolution, then the system becomes vulnerable
to DNS rebinding attacks [1], [6]. In these attacks, the victim
visits the attacker’s web site (e.g., attacker.com) while
the attacker’s DNS server responds to user’s initial DNS query
with an A record pointing to the attacker’s server but with a
short time-to-live. The client downloads the Java applet, which
then opens a socket to attacker.com. Because the DNS
response has expired, the Java virtual machine resolves the
host name again, but this time the attacker serves an A record
pointing to the target server, letting the applet (which is under
the attacker’s control) open a socket to the target server from
the client’s IP address. DNS rebinding attacks have been known
for a long time and are addressed by basing access control
decisions on the IP address rather than the host name, either
directly by checking against the IP address (as in Java) or by

1These restrictions do not apply to signed applets which the user has
accepted. Those applets have the user’s full privileges.

pinning, forcing a constant mapping between DNS name and
IP address regardless of the time-to-live of the DNS response.

B. Verified-Origin Policy

Unfortunately, the same-origin policy, strictly construed,
is quite limiting: many web application developers wish to
communicate with other web sites, for example to incorporate
additional functionality or content (including advertisements).
Allowing such communication is unsafe in the general case,
but the browser can safely allow communication as long as
it verifies that the target site consents to the communication
traffic. There are a number of Web technologies that implement
this verified-origin policy [7]:

1) Flash Cross-Domain Policies: Prior to letting a SWF
open a socket connections to a server, Flash Player first connects
to the site and fetches a cross-domain policy file2: an XML
blob that specifies the origins that are allowed to connect to
that site [9]. The location of the policy file is itself subject
to a number of restrictions, which make it more difficult for
an attacker who has limited access to the target machine to
generate a valid file. For instance, policy files hosted on ports
≥ 1024 cannot authorize access to ports < 1024.

Flash Player uses the same general mechanism to control
access both to raw sockets and to cross-domain HTTP requests.
As with Java, Flash Player’s consent mechanism was vulnerable
to DNS rebinding attacks in the past3. Indeed, the mechanism
described above where the cross-domain policy file is always
checked is a response to some of these rebinding attacks which
exploited a time-of-check-time-of-use (TOCTOU) issue between
the browser’s name resolution and that performed by Flash
Player.

2) JavaScript Cross-Origin Communication: Until recently,
network access for JavaScript applications was limited to
making HTTP requests via XMLHttpRequest. Browsers
heavily restrict these requests and forbid requesting cross-
origin URLs [10]. Recently, browser vendors have added two
mechanisms to allow web applications to escape (hopefully
safely) from these restrictions.

a) CORS: Cross-Origin Resource Sharing (CORS) [11]
allows web applications to issue HTTP requests to sites outside
their origin. When a web application issues a cross-origin
XMLHttpRequest, the browser includes the application’s
origin in the request in the Origin header. The server
can authorize the application to read back the response by
echoing the contents of the Origin request header in the
Access-Control-Allow-Origin response header. This
consent-based relaxation of the same-origin policy makes it
easier for different web applications to communicate in the
browser.

b) WebSockets: Although CORS is targeted only at HTTP
requests, WebSockets [4] lets web applications open a socket
connection to any server (whether or not the server is in the
application’s own origin) and send arbitrary data. This feature

2This description is a simplification of Flash Player’s security policy [8].
3The DNS rebinding issues in Flash Player were fixed in version 9.0.115.0

is extremely useful, especially as an optimization for scenarios
in which the server wishes to asynchronously send data to the
client. Currently, such applications use a rather clumsy set of
mechanisms generally known as Comet [12]. Like Flash Player
and CORS, WebSockets uses a verified-origin mechanism to let
the target server consent to the connection. Unlike Flash Player
and CORS, the verification is performed over the same socket
connection as will be used for the data (using a cryptographic
handshake where the server replies to a client-provided nonce).
This handshake is initiated by the browser and only after the
handshake has completed does the browser allow the application
to send data over the raw socket, which we further discuss in
Section IV.

III. ATTACKS ON JAVA AND FLASH SOCKETS

As the history of DNS rebinding issues suggest, designing
a robust same-origin or verified-origin policy is a challenging
problem. Previous designs have been extremely subject to
TOCTOU issues. In this section, we describe and demonstrate
a new class of vulnerabilities which affect all the major existing
and proposed same-origin and verified-origin policies, with the
exception of CORS. Using the raw socket APIs available to web
applications, our attacks exploit the existence of transparent
proxies in networks and, in particular, their confusion about how
to handle mismatches between the HTTP Host header and the
destination IP address of the connection they are intercepting.

A. Vulnerabilities

Consider the situation in which the user is behind a
transparent proxy and visits attacker.com. The attacker
embeds a malicious SWF served from attacker.com, and
the browser uses Flash Player to run the SWF. The attacker
can now mount a number of different attacks, depending on
how the proxy behaves.

1) Route by Host Header: When using a traditional proxy,
the browser connects directly to the proxy and sends an HTTP
request, which indicates to the proxy which resource the
browser wishes to retrieve. When a transparent proxy intercepts
an HTTP request made by a browser, the proxy has two options
for how to route the request:

• The HTTP Host header.
• The IP address to which the browser originally sent the

request.
Unfortunately, as described by Auger [2], if the proxy routes
the request based on the Host header, an attacker can trick
the proxy into routing the request to any host accessible to the
proxy, as depicted in Figure 1:

1) The attacker hosts a permissive Flash socket policy server
on attacker.com:843 that allows access to every
port from every origin.

2) The attacker’s SWF requests to open a raw socket con-
nection to attacker.com:80 (which has IP address
2.2.2.2).

3) Flash Player connects to attacker.com:843 and
retrieves the attacker’s socket policy file, which indicates
that the server has opted into the socket connection.

Fig. 1. IP hijacking attack

4) Flash Player lets the attacker’s SWF open a new socket
connection to attacker.com:80.

5) The attacker’s SWF sends a sequence of bytes over the
socket crafted with a fake Host header as follows:

GET / HTTP/1.1
Host: target.com

6) The transparent proxy treats these bytes as an HTTP
request and routes the request according to the Host
header (and not on the original destination IP address).
Notice that the request is routed to target.com:80
(which has an IP address of 1.1.1.1).

7) The target server responds with the document for the URL
http://target.com/, requested from the client’s IP
address, and the transparent proxy forwards the response
to the attacker’s SWF.

Notice that Flash Player authorized the attacker’s SWF to
open a socket to the attacker’s server based on a policy file it
retrieved from the attacker’s server. However, the transparent
proxy routed the request to a different server because the socket
API let the attacker break the browser’s security invariant that
the Host header matched the destination IP address, leading
to the vulnerability. Alternatively, the attacker can try to trick
the proxy into tunneling a raw socket connection to the target
server by using the HTTP CONNECT method [13] in step 5:

CONNECT target.com:80 HTTP/1.1
Host: target.com:80

By leveraging the user’s machine to connect to other hosts
in the Internet over these proxies, the attacker may hijack a
user’s IP address to perform misdeeds and frame the user. For
example, the attacker may generate fake clicks on pay-per-click
web advertisements to increase their advertising revenue [14],
using different client IP addresses. IP hijacking attacks may
also allow web attackers to access protected web sites that
authenticate by IP address, or send spam email from the victim
user’s IP address.

An attacker can also exploit Java sockets in the same way.
The attack steps are identical, except that the attacker need
not host a policy file because Java implicitly grants applet the
authority to open socket connections back to its origin server
without requiring the server to consent.

2) Cache by Host Header: In the attacks described in the
previous section, we considered transparent proxies that route
HTTP requests according to the Host header. However, not
all proxies are configured that way. Some proxies route the
request to the original destination IP address, regardless of
the Host header. Although these proxies are immune to IP
hijacking attacks, we find that the attacker can still leverage
some of these proxies to mount other attacks.

In particular, some transparent proxies that route by IP
are also caching proxies. As with routing, proxies can cache
responses either according to the Host header or according to
the destination IP address. If a proxy routes by IP but caches
according to the Host header, we discover that the attacker
can instruct the proxy to cache a malicious response for an
arbitrary URL of the attacker’s choice, as shown in Figure 2:

1) The attacker’s Java applet opens a raw socket connection
to attacker.com:80 (as before, the attacker can
also a SWF to mount a similar attack by hosting an
appropriate policy file to authorize this request).

2) The attacker’s Java applet sends a sequence of bytes over
the socket crafted with a forged Host header as follows:
GET /script.js HTTP/1.1
Host: target.com

3) The transparent proxy treats the sequence of bytes as
an HTTP request and routes the request based on the
original destination IP, that is to the attacker’s server.

4) The attacker’s server replies with malicious script file
with an HTTP Expires header far in the future (to
instruct the proxy to cache the response for as long as
possible).

5) Because the proxy caches based on the Host header,
the proxy stores the malicious script file in its

Fig. 2. Cache poisoning attack

cache as http://target.com/script.js, not as
http://attacker.com/script.js.

6) In the future, whenever any client requests
http://target.com/script.js via the proxy,
the proxy will serve the cached copy of the malicious
script.

One particularly problematic variant of this attack is for
the attacker to poison the cache entry for Google Analytics,
http://www.google-analytics.com/ga.js. Every
user of the proxy (possibly the entire enterprise) will now
load the attacker’s malicious JavaScript into every page that
uses Google Analytics, which is approximately 57% of the top
10,000 web sites [15]. Because the Google Analytics JavaScript
runs with the privileges of the embedding web site, the attacker
is able to effectively mount a persistent cross-site scripting
attack against the majority of the Internet, as viewed by users
of the proxy.

B. Experiment

The attacks described above have very specific network
configuration requirements. To determine how commonplace
these network configurations are on the Internet, we developed
proof-of-concept exploits for both the IP hijacking and cache
poisoning attacks using both Flash Player and Java. We then ran
an advertisement on a public advertising network that mounted
the attacks against servers in our laboratory.

1) Methodology: Our experiment consisted of two machines
in our laboratory, with different host names and IP addresses.
One machine played the role of the target server and the
other played the role of the attacking server. The target was a
standard Apache web server. The attacking server ran a standard
Apache web server and a Flash socket policy server on port
843. We used a rich media banner advertisement campaign
on an advertising network to serve our experimental code to
users across the world. Our advertisement required no user
interaction, and was designed to perform the following tasks
in the user’s web browser:

a) IP Hijacking: Our advertisement opens a raw socket
connection back to the attacking server using both Java and
Flash Player. The attacking server runs a custom Flash socket
policy server on port 843 that allows Flash socket connections
to port 80 from any origin. Upon a successful connection,
the advertisement spoofs an HTTP request over the socket by
sending the following request:

GET /script.php/<random> HTTP/1.1
Host: target.com

The attacking server and the target server each host a PHP
file at /script.php, but because these files are different
we can easily determine which server the request went to. The
random value on the end of the URL serves to bypass caches
used by plug-ins, browsers, or proxies. Alternatively, we could
have included the random value in the query string (i.e., after
a ? character) but some caching proxies treat URLs containing
query strings inconsistently.

If the HTTP response was from the target server instead
of from the attacking server, that is direct evidence that the
request was routed by the Host header, which implies that
the user is vulnerable to IP hijacking.

b) Cache Poisoning: In the previous test, the script
files were served with Cache-Control: public,
Last-Modified and Expires response headers that
allowed them to be cached for one year. To check
whether the socket connection has poisoned the proxy’s
cache, we added a script tag to our advertisement that
attempts to load a script from the target server at
http://target.com/script.php/<random>,
reusing the random value from the previous request.

Because the random value was only used previously via
the socket API, this URL will not be present in the browser’s
HTTP cache (as the browser does not observe the bytes sent
over the socket). By checking the contents of the response
(specifically, a JavaScript variable), we can determine whether
the script was from the attacker or the target server. If we

Flash Player Java
Spoof request routed to target? 3152 2109
Spoof request routed to attacker 47839 26759
Script file cached from target 51163 26612
Script file cached from attacker† 108 53

TABLE I
HTTP HOST HEADER SPOOFING VIA PLUG-IN SOCKETS

POST-based Upgrade-based CONNECT-based
Handshake pass and spoof request ignored 47741 47162 47204
Spoof request routed to target? 1376 1 0
Spoof request routed to attacker 97 174 2
Script file cached from target 54519 54526 54534
Script file cached from attacker† 15 8 0

TABLE II
HTTP HOST HEADER SPOOFING VIA HTML5 WEBSOCKET STRAWMAN PROTOCOLS

? Allows attacker to open a direct socket from the client to an arbitrary server
† Allows attacker to poison the HTTP cache of all clients of the proxy

receive the version of the script hosted on the attack server, we
can deduce that a transparent proxy has cached the response.

2) Results: We ran our advertisement on five successive
days in March 2011, spending $100 in total. We garnered a
total of 174,250 unique impressions. We discarded repeat visits
by the same users by setting a cookie in the user’s browser.
The advertisement ran our JavaScript, SWF, and Java bytecode
without user intervention and sent results back to server in our
laboratory after completing the experiment. If the user closed
the browser window or navigated away before the experiment
finished running, we did not receive the results from that part
of the experiment. We collected 51,273 results from SWFs and
30,045 results from Java applets (19,117 of the impressions
produced results from both tests). The most likely reason for
the low response rate is that the loading time of our SWF and
Java applet was noticeably slow, and users did not stay on the
page long enough for the experiment to run. Our experimental
results show that both IP hijacking attacks and cache poisoning
exist in real world scenarios, as shown in Table I.

a) IP Hijacking: In the IP hijacking test using Flash
sockets, we observed that the spoofed request was routed
back to the attacking server on 47,839 of 51,273 impressions
(93.3%), suggesting that the client made a direct connection
or the network intermediaries routed regardless of the Host
header. We logged 233 of 51,273 impressions (0.4%) where
the Flash socket failed to open, possibly due to firewalls that
blocked port 843, preventing Flash Player from fetching the
socket policy file. There were 49 cases where the client received
an HTML error message, possibly generated by a transparent
proxy that blocked the spoofed request. On 3,152 impressions
(6.1%) the spoofed request was routed by the Host header to
the target server, indicating vulnerability to IP hijacking.

Using Java sockets, we observed that 26,759 of 30,045
impressions (89.1%) received the response from the attacker’s
server, implying that they were routing on IP. Out of 30,045
impressions, there were 1,134 (3.8%) connection errors that
threw Java exceptions and 43 that received an HTML error

message. We found that 2,109 of 30,045 impressions (7%)
routed on the Host header, allowing IP hijacking attacks.

b) Cache Poisoning: In the cache poisoning test using
Flash sockets, we observed that 51,163 of 51,273 impressions
(99.8%) were able to fetch the script from the target. There were
2 cases where the client reported an error response. However,
we discovered that the cache poisoning attack was successful
on 108 of 51,273 impressions (0.21%). This suggests that
some transparent proxies route HTTP requests by IP but cache
according to the Host header.

In our cache poisoning test using Java sockets, we observed
26,612 of 30,045 impressions (88.6%) retrieved the response
from the target server. We observed that 3,680 of 30,045
impressions (12.2%) caused exceptions when using Java to
interrogate the results of the second query, which we were
unable to determine whether the cache poisoning succeeded
or not. Similarly to the results using Flash sockets, there were
53 of 30,045 impressions (0.18%) that reported a successful
cache poisoning attack.

Our results show that the attacker may achieve a cost
efficiency of 1.08 successful cache poisoning attacks per
dollar spent, using Flash sockets on advertising networks. Note
that each successful cache poisoning attack would in effect
compromise other users of the vulnerable proxy, beyond our
measurement.

IV. ATTACKS ON WEBSOCKET PROTOCOLS

One diagnosis of the cause of the Java and Flash socket
vulnerabilities is that both use an out-of-band mechanism
to authorize socket connections. Because intermediaries are
oblivious to these out-of-band signals, they misinterpret the
information sent over the socket by the attacker. In this section,
we consider three in-band signaling mechanisms for authorizing
socket connections, all based on HTTP. The first is a POST-
based handshake of our own invention to illustrate some of
the design issues. The second is the state-of-the-art Upgrade-
based handshake used by HTML5. The third is an experimental

CONNECT-based handshake that we designed in attempt to
prevent attacks.

A. POST-based Handshake

1) Design: One natural approach to designing an in-band
signaling mechanism is to model the handshake after HTTP.
The idea here is that until we have established the server’s
consent to receive WebSockets traffic, we will not send any data
that the attacker could not already have generated with existing
browser functionality—with the HTML form element being
the most powerful piece of syntax in this respect—so what
could possibly go wrong? This should protect servers which
do not want to speak WebSockets from being sent WebSockets
data. With this goal in mind, consider the following strawman
handshake based on an HTTP POST request:

Client → Server:
POST /path/of/attackers/choice HTTP/1.1
Host: host-of-attackers-choice.com
Sec-WebSocket-Key: <connection-key>

Server → Client:
HTTP/1.1 200 OK
Sec-WebSocket-Accept: <connection-key>

By echoing the connection key to the client, the server consents
that it accepts the WebSocket protocol. If WebSockets are less
generative than the form element, then we might believe that
adding WebSockets support to browsers does not increase the
attack surface.

2) Vulnerabilities: Unfortunately, using this handshake Web-
Sockets are not less generative than the HTML form element.
For example, WebSocket applications can generate data that
appear as framing escapes and confuse network intermediaries
into handling subsequent data as new HTTP connections,
instead of a continuous single HTTP connection expressed
by the form element. Although we have accomplished our
initial goal of not sending any non-HTTP data to WebSockets
servers, we can still confuse transparent proxies.

Consider an intermediary examining packets exchanged
between the browser and the attacker’s server. As above,
the client requests WebSockets and the server agrees. At
this point, the client can send any traffic it wants on the
channel. Unfortunately, the intermediary does not know about
WebSockets, so the initial WebSockets handshake just looks
like a standard HTTP request/response pair, with the request
being terminated, as usual, by an empty line. Thus, the client
program can inject new data which looks like an HTTP request
and the proxy may treat it as such. So, for instance, he might
inject the following sequence of bytes:

GET /sensitive-document HTTP/1.1
Host: target.com

When the intermediary examines these bytes, it might conclude
that these bytes represent a second HTTP request over the
same socket. If the intermediary is a transparent proxy, the

intermediary might route the request or cache the response
according to the forged Host header, discussed in Section III.

3) Experiment: To evaluate the practicality of mounting IP
hijacking and cache poisoning attacks with the WebSocket
handshakes, we implemented prototypes for each WebSocket
handshake using Flash sockets and a WebSocket server written
in Python. We reused the system from the Java and Flash
socket experiment with the following changes. We setup a
custom multiplexing server at port 80 on the attacking server,
which forwards requests to either a standard Apache server
or the WebSocket server depending on the request headers.
We ran an advertisement campaign for four successive days
in November 2010, spending $20 in the Philippines and $80
globally. Our advertisement contains a SWF which performs
the WebSocket handshake, spoofs an HTTP request upon
handshake success, and instructs the browser to request a script
from the target server using a script tag. We experimented
with how intermediaries process each WebSocket handshake.
Table II shows our results.

Out of a total of 54,534 impressions, 49,218 (90.2%)
succeeded with the POST-based handshake and 5,316 (9.4%)
failed. Out of the 49,218 impressions on which we were able
to run our IP hijacking test, 47,741 (96.9%) reported that
no intermediaries were confused when sending the spoofed
HTTP request. However, we found that the IP hijacking attack
succeeded on 1,376 of 49,218 impressions (2.8%), where the
client was behind a Host-routing proxy. There were 97 of
49,218 impressions (0.2%) where the spoofed request was
routed by IP and 4 that received an HTML error. We ran
the cache poisoning test on the clients that succeeded with
the POST-based handshake, and found 15 successful cache
poisoning attacks. These results show that the POST-based
handshake is vulnerable to both attacks.

B. Upgrade-based Handshake

1) Design: In an attempt to improve the security of its
socket handshake, HTML5 uses HTTP’s Upgrade mechanism
to upgrade from the HTTP protocol to the WebSocket proto-
col. HTTP’s Upgrade mechanism is a generic mechanism
for negotiating protocols using HTTP which was originally
designed for layering TLS over HTTP. HTTP’s Upgrade
mechanism has two pieces: a Connection header whose
value is the string “Upgrade” and an Upgrade header whose
value is the name of the protocol to which the client wishes to
switch. Below is a simplified version of the HTML5 WebSocket
handshake using HTTP’s Upgrade mechanism.

Client → Server:
GET /path/of/attackers/choice HTTP/1.1
Host: host-of-attackers-choice.com
Connection: Upgrade
Sec-WebSocket-Key: <connection-key>
Upgrade: WebSocket

Server → Client:
HTTP/1.1 101 Switching Protocols

Connection: Upgrade
Upgrade: WebSocket
Sec-WebSocket-Accept:
HMAC(<connection-key>, "...")

2) Vulnerabilities: Unfortunately, HTTP’s Upgrade mech-
anism is virtually unused in practice. Instead of layering TLS
over HTTP using Upgrade, nearly every deployment of HTTP
over TLS uses a separate port, typically port 443 (the generic
name for this mode is HTTPS [16]). Consequently, many
organizations are likely to deploy network intermediaries that
fail to implement the Upgrade mechanism because these
intermediaries will largely function correctly on the Internet
today. Implementers and users of these intermediaries have
little incentive to implement Upgrade, and might, in fact, be
unaware that they do not implement the mechanism.

To an intermediary that does not understand HTTP’s
Upgrade mechanism, the HTML5 WebSocket handshake
appears quite similar to our strawman POST-based handshake.
These intermediaries are likely to process the connection
the same way for both the POST-based handshake and
the Upgrade-based handshake. If such an intermediary is
vulnerable to the attacks on the POST-based handshake, the
intermediary is likely to be vulnerable to the same attacks
when using the Upgrade-based handshake.

3) Experiment: In our experiment, we tested how intermedi-
aries in the wild process the Upgrade-based handshake. Out
of a total of 54,534 impressions, 47,338 (86.8%) succeeded
with the handshake and 7,196 (13.2%) failed. The handshake
failed more often than the POST-based handshake, possibly
when the Upgrade mechanism was unsupported and, perhaps,
stripped. Out of the 47,338 impressions on which we were able
to run our IP hijacking test, 47,162 (99.6%) did not receive a
response after spoofing an HTTP request. We noticed that the
IP hijacking attack succeeded on 1 impression, where the client
was behind a Host-routing proxy. There were 174 of 47,338
impressions (0.37%) where the spoofed request was routed by
IP. One impression received an HTML error message.

Out of the 47,338 impressions that succeeded the Upgrade-
based handshake, we ran the cache poisoning test and found
8 successful cache poisoning attacks. The 8 impressions were
also vulnerable to cache poisoning when using the POST-based
handshake.

C. CONNECT-based Handshake

1) Design: Rather than relying upon the rarely used HTTP
Upgrade mechanism to inform network intermediaries that the
remainder of the socket is not HTTP, we consider using HTTP’s
CONNECT mechanism. Because CONNECT is commonly used
to establish opaque tunnels pass TLS traffic, transparent proxies
are likely to interpret this request as an HTTPS connect request,
assume the remainder of the socket is unintelligible, and simply
route all traffic transparently based on the IP. We create a
strawman handshake based on the CONNECT mechanism.

Client → Server:
CONNECT websocket.invalid:443 HTTP/1.1

Host: websocket.invalid:443
Sec-WebSocket-Key: <connection-key>
Sec-WebSocket-Metadata: <metadata>

Server → Client:
HTTP/1.1 200 OK
Sec-WebSocket-Accept: <hmac>

where <connection-key> is a 128-bit random number
encoded in base64 and <metadata> is various metadata
about the connection (such as the URL to which the client
wishes to open a WebSocket connection). In the server’s
response, <hmac> is the HMAC of the globally unique iden-
tifier 258EAFA5-E914-47DA-95CA-C5AB0DC85B11 un-
der the key <connection-key> (encoded in base64).
By sending the <hmac> value, the server demonstrates to
the client that it understands and is willing to speak the
WebSocket protocol because computing the <hmac> value
require “knowledge” of an identifier that is globally unique to
the WebSocket protocol.

Notice that instead of using the destination server’s host
name, we use an invalid host name (per RFC 2606 [17]). Any
intermediaries that do not recognize the WebSocket protocol
but understand this message according to its HTTP semantics
will route the request to a non-existent host and fail the request.

2) Experiment: We tested whether the CONNECT-based
handshake would resist transparent proxy attacks in the real
world. Out of a total of 54,534 impressions, 47,206 (86.6%)
succeeded with the handshake and 7,328 (13.4%) failed. Out
of the 47,206 impressions on which we were able to run our IP
hijacking test, only three did receive a response after spoofing
an HTTP request. We observed that the IP hijacking attack
did not succeed on any clients. We logged 1 impression that
returned an HTML error message. We observed 2 impressions
where the spoof request was routed by IP to the attacking
server, however none indicated proxy routing based on the
Host header. It appears that these proxies simply passed the
CONNECT to our server untouched and then treated the next
spoofed request as if it were a separate request routed by IP.
We proceeded to the cache poisoning test and did not find
successful cache poisoning attacks.

D. Our Proposal

1) Design: In our experiments, we found successful attacks
against both the POST-based handshake and the Upgrade-
based handshake. For the CONNECT-based handshake, we ob-
served two proxies which appear not to understand CONNECT
but simply to treat the request as an ordinary request and then
separately route subsequent requests, with all routing based on
IP address. Although these proxies did not cache, it is possible
that proxies of this type which cache do exist—though our
data suggest that they would be quite rare. In this case the
attacker would be able to mount a cache poisoning attack.

A mitigation for these attacks is to mask all the attacker-
controlled bytes in the raw socket data with a stream cipher.
The stream cipher is not to provide confidentiality from

eavesdroppers but to ensure that the bytes on the wire appear
to be chosen uniformly at random to network entities that do
not understand the WebSocket protocol, making it difficult
for the attacker to confuse the receiver into performing some
undesirable action.

We propose masking the metadata in the initial hand-
shake and all subsequent data frames with a stream
cipher, such as AES-128-CTR. To key the encryption,
the client uses HMAC of the globally unique identifier
C1BA787A-0556-49F3-B6AE-32E5376F992B with the
key <connection-key>. However, encrypting the raw
socket writes as one long stream is insufficient because the
attacker learns the encryption key in the handshake thus can
generate inputs to the socket write function that produce
ciphertexts of his choice. Instead, we encrypt each protocol
frame separately, using a per-frame random nonce as the top
part of the CTR counter block, with the lower part being
reserved for the block counter. From the perspective of the
attacker, this effectively randomizes the data sent on the wire
even if the attacker knows the key exchanged in the handshake.
Note that each protocol frame must be encrypted with a fresh
nonce and that the browser must not send any bytes on the
wire until the browser receives the entire data block from the
application. Otherwise, the attacker could learn the nonce and
adjust the rest of the input data based on that information.4

This mitigation comes at a modest performance cost and some
cost in packet expansion for the nonce, which needs to be
large enough that the attacker’s chance of guess the nonce is
sufficiently low.

In the case that the cost of encryption is a burden, Sta-
chowiak [19] suggests using a simple XOR cipher as a
lightweight alternative to using AES-128-CTR. In particular,
the client generates a fresh 32 bit random nonce for every frame,
and the plaintext is XORed with a pad consisting of the nonce
repeated. Because the nonce is unknown to the attacker prior to
receiving the corresponding data frame, the attacker is unable
to select individual bytes on the wire. However, because the
pad repeats, the attacker is able to select correlations between
the bytes on the wire, but we are unaware of how to leverage
that ability in an attack.

Other proposals with simpler transformations have been
discussed in the WebSocket protocol working group, such
as flipping the first bit in the frame, or escaping ASCII
characters and carriage returns in the handshake. However,
these proposals do not protect servers or intermediaries with
poor implementation that skip non-ASCII characters. Moreover,
using cryptographic masking also mitigates other attack vectors,
such as non-HTTP servers that speak protocols with non-ASCII
bytes. We believe masking is a more robust solution to these
attacks that is more likely to withstand further security analysis.

2) Experiment: We evaluated the network performance of
WebSockets using no masking, XOR masking (with 32 bit
nonces) and AES-128-CTR masking (with 32, 64 and 128
bit nonces), modified on a Java implementation [20]. From

4A similar condition applies to TLS [18] packet writes.

!
"!!!
#!!!
$!!!
%!!!
&!!!
'!!!
(!!!
)!!!
*!!!

"!!!!

" # $ % & ' ()

!"
"#

$%
&'$

()
'*
+,(
-&
'./

0$
12

3%40()'"5'1,4%+&6-("%1'*+,(-&1

+,-./01234

567
8$#-92:-3,3;<=

>?@A"#)ABC7
8$#-92:-3,3;<=

>?@A"#)ABC7
8'%-92:-3,3;<=

>?@A"#)ABC7
8"#)-92:-3,3;<=

(a) 1,000 byte data frames

!
"!!!
#!!!
$!!!
%!!!
&!!!
'!!!
(!!!
)!!!
*!!!

"!!!!

" # $ % & ' ()
!"

"#
$%

&'$
()
'*
+,(
-&
'./

0$
12

3%40()'"5'1,4%+&6-("%1'*+,(-&1

+,-./01234

567
8$#-92:-3,3;<=

>?@A"#)ABC7
8$#-92:-3,3;<=

>?@A"#)ABC7
8'%-92:-3,3;<=

>?@A"#)ABC7
8"#)-92:-3,3;<=

(b) 100 byte data frames

!
"!!!
#!!!
$!!!
%!!!
&!!!
'!!!
(!!!
)!!!
*!!!

"!!!!

" # $ % & ' ()

!"
"#

$%
&'$

()
'*
+,(
-&
'./

0$
12

3%40()'"5'1,4%+&6-("%1'*+,(-&1

+,-./01234

567
8$#-92:-3,3;<=

>?@A"#)ABC7
8$#-92:-3,3;<=

>?@A"#)ABC7
8'%-92:-3,3;<=

>?@A"#)ABC7
8"#)-92:-3,3;<=

(c) 10 byte data frames

Fig. 3. Performance of WebSocket data frames

slicehost.com, we acquired a 1,024 MB RAM machine
as the server with uncapped incoming bandwidth and eight
256 MB RAM machines as the clients, each with 10 Mbps
outgoing bandwidth. In our evaluation, we measured the elapsed
time for each client to send 10 MB of application data to
the server with various frame sizes, while the server handles
up to 8 clients simultaneously. Results for sending 1,000
byte data frames, 100 byte data frames and 10 byte data
frames are shown in Figure 3(a), Figure 3(b) and Figure 3(c),
respectively. We observe that AES-128-CTR masking induces
little overhead when the data frame size is as large as 1,000
bytes. However, the performance of AES-128-CTR masking
drops off significantly for smaller data frames in comparison

with no masking, whereas XOR masking still performs at
acceptable speeds.

3) Adoption: We reported the vulnerabilities to the IETF
WebSocket protocol working group in November 2010. Due
to concerns about these attacks, Firefox [21] and Opera [22]
temporarily disabled the WebSocket protocol. In response to
our suggestion, the working group reached consensus to prevent
the attacker from controlling the bytes sent on the wire by
requiring XOR-based masking. Internet Explorer adopted frame
masking in their WebSocket prototype using Silverlight plug-in
in HTML5 Labs [23]. We hope to assist the Flash Player and
Java plug-ins in addressing these issues in the near future.

4) Discussion: In our study, we observe a number of
misbehaving network intermediaries. Unfortunately, we are
unable to determine which specific proxy implementations
are vulnerable because the misbehaving proxies were almost
entirely transparent. For example, the proxies did not announce
their presence using the HTTP Via header, as required by the
HTTP specification. Moreover, the vulnerable behavior might
actually be the result of a chain of proxies, none of which are
individually vulnerable.

One approach to resolving these vulnerabilities is to wait for
misbehaving proxies to be replaced. However, the time horizon
for replacing these proxies is unbounded. Rather than wait for
these proxies to be fixed, we recommend that browser vendors
resolve the issue in the HTML5 WebSocket protocol itself, as
they have done. Further, we recommend that the appropriate
vendors fix the related vulnerabilities in Flash Player and Java.
(Note: users and enterprises can mitigate silent exploitation
of these plug-in vulnerabilities by disabling the plug-ins by
default and using a “click-to-Flash” authorization model.)

V. RELATED WORK

A. Cross-Protocol Attacks

Cross-protocol attacks are used to confuse a server or an in-
termediary into associating a request with an incorrect protocol.
We described an instance of a cross protocol attack between
HTTP and the WebSocket protocol. Topf [24] describes an
attack that uses HTML forms to send commands to servers
running ASCII based protocols like SMTP, NNTP, POP3, IMAP,
and IRC. To prevent these attacks, browsers restrict access to
well-known ports of vulnerable applications, such as port 25
for SMTP. This defense cannot be applied to WebSockets
because WebSockets operates over port 80, the same port as
with HTTP, for compatibility. We suspect there are other forms
of cross-protocol attacks and expect to address more of these
problems in future work.

B. HTTP Cache Poisoning

Bueno [25] describes an HTTP cache poisoning attack on
web pages that rely on the value of the HTTP Host header to
generate HTML links. In particular, a malicious client sends an
HTTP request with a crafted Host header, causing the server
to rewrite links with an arbitrary string provided by the attacker.
If there is any caching going on by proxies along the way,
other clients will get the exploited page with injected text. A

mitigation for these attacks is to not generate any page content
using the Host header. In comparison, our cache poisoning
attacks do not rely on the usage of Host header in the target
page, and allow the attacker to poison the proxy’s cache for
an arbitrary URL on any target host.

C. HTTP Response Splitting

In an HTTP response splitting attack [26], the attacker
sends a single HTTP request that tricks the benign server
into generating an HTTP response that is misinterpreted by
the browser or an intermediary as two HTTP responses.
Typically, the malicious request contains CRLF sequences
that are reflected by the server into the output stream and
appear to terminate the first response, letting the attacker craft
the byte sequence that the browser or intermediary interprets
as the second response. The attacker can mount a cache
poisoning attack by sending a second request to a benign
server, which causes the browser or proxy associates with
the second “response” and stores in its cache. Servers can
prevent the attack by sanitizing data and not allowing CRLF in
HTTP response headers. In our work, we introduce new cache
poisoning attacks against transparent proxies, which are not
addressed by previous mitigations.

D. Pretty-Bad-Proxy

Chen et. al. [27] introduce a series of attacks in which a
malicious proxy breaks the end-to-end security guarantees of
the TLS protocol by injecting messages that are interpreted
as HTTPS responses by the browser. A malicious proxy can
trick browsers into running a script of the attacker’s choice in
the security context of a target server by embedding scripts
in HTTP error messages or by redirecting script requests
to malicious servers using HTTP redirects. Browsers have
mitigated these vulnerabilities by ignoring the proxy redirection
and error messages received prior to completing the TLS
handshake. Our work does not focus on malicious proxies.
Rather, we are interested in benign-but-confused proxies.
However, one should always be wary of malicious proxies
when designing a secure communication protocol.

VI. CONCLUSION

Although raw socket access is an important capability for
full-featured browser-based applications, providing sockets
safely has proven to be challenging. Although raw socket
access requires the destination server’s consent to receive raw
socket traffic, our results demonstrate that raw sockets can
still be abused in the presence of certain transparent proxies.
Our experiments show that approximately 7% of browsers are
behind proxies with implementation errors that may enable
attack via one of these vectors.

The designers of consent protocols should consider how
the attacker can manipulate these protocols to exploit network
intermediaries that unintentionally proxy the consent of the
remote server without understanding its semantics. We propose
improving the security of current consent mechanisms by
encrypting all the attacker-controlled bytes sent over the

wire using per-frame random nonces so that raw socket
traffic appears random to oblivious network intermediaries. In
response to our suggestion, the WebSocket protocol working
group has introduced frame masking, improving the security
of WebSockets.

REFERENCES

[1] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh, “Protecting
browsers from dns rebinding attacks,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, 2007.

[2] R. Auger, “Socket capable browser plugins result in transparent proxy
abuse,” 2010, http://www.thesecuritypractice.com/the security practice/
TransparentProxyAbuse.pdf.

[3] I. Fette, “The WebSocket protocol,” 2011, http://tools.ietf.org/html/
draft-ietf-hybi-thewebsocketprotocol.

[4] I. Hickson, “The Web Sockets API,” 2009, http://www.w3.org/TR/
websockets/.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,” RFC 2616
(Draft Standard), Internet Engineering Task Force, Jun. 1999, updated by
RFCs 2817, 5785. [Online]. Available: http://www.ietf.org/rfc/rfc2616.txt

[6] D. D. Edward, E. W. Felten, and D. S. Wallach, “Java security: From
hotjava to netscape and beyond,” in Proceedings of the 1996 IEEE
Symposium on Security and Privacy, 1996.

[7] H. Wang, X. Fan, J. Howell, and C. Jackson, “Protection and communi-
cation abstractions for web browsers in mashupos,” in Proceedings of
21st ACM SIGOPS Symposium on Operating Systems Principles (SOSP),
2007.

[8] Adobe, “White paper: Adobe flash player 10 security,” 2008, http://www.
adobe.com/devnet/flashplayer/articles/flash player10 security wp.html.

[9] Adobe, “Cross-domain policy file specification,” 2010, http://www.adobe.
com/devnet/articles/crossdomain policy file spec.html.

[10] M. Zalewski, “Browser security handbook,” http://code.google.com/p/
browsersec/wiki/Main.

[11] A. van Kesteren, “Cross-Origin Resource Sharing,” 2010, http://www.
w3.org/TR/cors/.

[12] A. Russell, “Comet: Low Latency Data for the Browser,” 2006, http:
//infrequently.org/2006/03/comet-low-latency-data-for-the-browser/.

[13] R. Khare and S. Lawrence, “Upgrading to TLS Within HTTP/1.1,” RFC
2817 (Proposed Standard), Internet Engineering Task Force, May 2000.
[Online]. Available: http://www.ietf.org/rfc/rfc2817.txt

[14] V. Anupam, A. Mayer, K. N. an Benny Pinkas, and M. K. Reiter, “On
the security of pay-per-click and other web advertising schemes,” in
Proceedings of the 8th International Conference on World Wide Web,
1999.

[15] BuiltWith, “Google Analytics Usage Statistics,” 2011, http://trends.
builtwith.com/analytics/Google-Analytics.

[16] E. Rescorla, “HTTP Over TLS,” RFC 2818 (Informational), Internet
Engineering Task Force, May 2000, updated by RFC 5785. [Online].
Available: http://www.ietf.org/rfc/rfc2818.txt

[17] D. Eastlake 3rd and A. Panitz, “Reserved Top Level DNS Names,” RFC
2606 (Best Current Practice), Internet Engineering Task Force, Jun.
1999. [Online]. Available: http://www.ietf.org/rfc/rfc2606.txt

[18] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246 (Proposed Standard), Internet Engineering Task
Force, Aug. 2008, updated by RFCs 5746, 5878. [Online]. Available:
http://www.ietf.org/rfc/rfc5246.txt

[19] M. Stachowiak, “Re: [hybi] handshake was: The websocket protocol is-
sues.” 2010, http://www.ietf.org/mail-archive/web/hybi/current/msg04379.
html.

[20] J. Tamplin, “Sample code for evaluation of WebSocket draft proposals,”
2011, http://code.google.com/p/websocket-draft-eval/.

[21] C. Heilmann, “WebSocket disabled in Firefox 4,” 2010, http://hacks.
mozilla.org/2010/12/websockets-disabled-in-firefox-4/.

[22] A. van Kesteren, “Disabling the WebSocket Protocol,” 2010, http://
annevankesteren.nl/2010/12/websocket-protocol-vulnerability.

[23] C. Caldato, “The Updated WebSockets Prototype,” 2011,
http://blogs.msdn.com/b/interoperability/archive/2011/02/09/
the-updated-websockets-prototype.aspx.

[24] J. Topf, “Html form protocol attack,” 2001, http://www.remote.org/jochen/
sec/hfpa/hfpa.pdf.

[25] C. Bueno, “HTTP Cache Poisoning via Host Header Injection,” 2008,
http://carlos.bueno.org/2008/06/host-header-injection.html.

[26] A. Klein, “Divide and conquer - HTTP response splitting, web cache
poisoning attacks, and related topics,” 2004, http://packetstormsecurity.
org/papers/general/whitepaper httpresponse.pdf.

[27] S. Chen, Z. Mao, Y.-M. Wang, and M. Zhang, “Pretty-bad-proxy: An
overlooked adversary in browsers’ https deployments,” in Proceedings
of the 2009 30th IEEE Symposium on Security and Privacy, 2009.

